BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11759049)

  • 1. Pyrimidine base catabolism in Pseudomonas putida biotype B.
    West TP
    Antonie Van Leeuwenhoek; 2001 Oct; 80(2):163-7. PubMed ID: 11759049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas putida PydR, a RutR-like transcriptional regulator, represses the dihydropyrimidine dehydrogenase gene in the pyrimidine reductive catabolic pathway.
    Hidese R; Mihara H; Kurihara T; Esaki N
    J Biochem; 2012 Oct; 152(4):341-6. PubMed ID: 22782928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of the pyrimidine bases uracil and thymine by Escherichia coli B.
    Patel BN; West TP
    Microbios; 1987; 49(199):107-13. PubMed ID: 3553866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrimidine ribonucleoside catabolic enzyme activities of Pseudomonas pickettii.
    West TP
    Antonie Van Leeuwenhoek; 1994; 66(4):307-12. PubMed ID: 7710277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of pyrimidine bases in Clostridium sticklandii.
    Schäfer R; Schwartz AC
    Arch Microbiol; 1980 Jan; 124(1):111-4. PubMed ID: 7377903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrimidine base and ribonucleoside utilization by the Pseudomonas alcaligenes group.
    West TP
    Antonie Van Leeuwenhoek; 1991 May; 59(4):263-8. PubMed ID: 1883229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene identification and enzymatic characterization of the initial enzyme in pyrimidine oxidative metabolism, uracil-thymine dehydrogenase.
    Soong CL; Deguchi K; Takeuchi M; Kozono S; Horinouchi N; Si D; Hibi M; Shimizu S; Ogawa J
    J Biosci Bioeng; 2024 Jun; 137(6):413-419. PubMed ID: 38485553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of an Escherichia coli B mutant strain defective in uracil catabolism.
    West TP
    Can J Microbiol; 1998 Nov; 44(11):1106-9. PubMed ID: 10030006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3S.
    Matcher GF; Burton SG; Dorrington RA
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):391-400. PubMed ID: 15064875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cytosine deaminase and beta-alanine-pyruvate transaminase in pyrimidine base catabolism by Burkholderia cepacia.
    West TP
    Antonie Van Leeuwenhoek; 2000 Jan; 77(1):1-5. PubMed ID: 10696871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a pyrimidine ribonucleotide salvage pathway in Pseudomonas oleovorans.
    Gill R; West TP
    Arch Microbiol; 2022 Jun; 204(7):383. PubMed ID: 35689128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pathway for Degradation of Uracil to Acetyl Coenzyme A in Bacillus megaterium.
    Zhu D; Wei Y; Yin J; Liu D; Ang EL; Zhao H; Zhang Y
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dilution rate on NAD(P) and NAD(P)H concentrations and ratios in a Pseudomonas sp. grown in continuous culture.
    Matin A; Gottschal JC
    J Gen Microbiol; 1976 Jun; 94(2):333-41. PubMed ID: 7637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay.
    Traut TW; Loechel S
    Biochemistry; 1984 May; 23(11):2533-9. PubMed ID: 6433973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of pyrimidine formation in Pseudomonas putida ATCC 17536.
    Santiago MF; West TP
    Can J Microbiol; 2002 Dec; 48(12):1076-81. PubMed ID: 12619820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis.
    Zrenner R; Riegler H; Marquard CR; Lange PR; Geserick C; Bartosz CE; Chen CT; Slocum RD
    New Phytol; 2009; 183(1):117-132. PubMed ID: 19413687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy conservation by pyrroloquinoline quinol-linked xylose oxidation in Pseudomonas putida NCTC 10936 during carbon-limited growth in chemostat culture.
    Hardy GP; Teixeira de Mattos MJ; Neijssel OM
    FEMS Microbiol Lett; 1993 Feb; 107(1):107-10. PubMed ID: 8385642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of exogenous pyrimidines as a source of nitrogen by cells of the yeast Rhodotorula glutinis.
    Milstein OA; Bekker ML
    J Bacteriol; 1976 Jul; 127(1):1-6. PubMed ID: 945262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.