BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11759049)

  • 21. Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase.
    Tuchman M; Ramnaraine ML; O'Dea RF
    Cancer Res; 1985 Nov; 45(11 Pt 1):5553-6. PubMed ID: 4053028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrimidine ribonucleoside catabolism in Pseudomonas fluorescens biotype A.
    Chu CP; West TP
    Antonie Van Leeuwenhoek; 1990 May; 57(4):253-7. PubMed ID: 2112895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen.
    Kaech A; Egli T
    Syst Appl Microbiol; 2001 Jul; 24(2):252-61. PubMed ID: 11518329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3.
    O'Connor K; Duetz W; Wind B; Dobson AD
    Appl Environ Microbiol; 1996 Oct; 62(10):3594-9. PubMed ID: 8967774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency.
    Schnackerz KD; Dobritzsch D
    Biochim Biophys Acta; 2008 Mar; 1784(3):431-44. PubMed ID: 18261476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine.
    Yin J; Wei Y; Liu D; Hu Y; Lu Q; Ang EL; Zhao H; Zhang Y
    J Biol Chem; 2019 Oct; 294(43):15662-15671. PubMed ID: 31455636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Dynamics of the NADP+ and NAD+ levels in the mycelium of P. nigricans Thom strains of varying productivity depending on the carbon source].
    Rogal' IG
    Antibiotiki; 1979 Aug; 24(8):570-4. PubMed ID: 39492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
    Basu A; Apte SK; Phale PS
    Appl Environ Microbiol; 2006 Mar; 72(3):2226-30. PubMed ID: 16517677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined deficiencies of NADPH- and NADH-dependent dihydropyrimidine dehydrogenases, a new finding in a family with thymine-uraciluria.
    van Gennip AH; van Lenthe H; Abeling NG; Bakker HD; van Kuilenburg AB
    J Inherit Metab Dis; 1995; 18(2):185-8. PubMed ID: 7564242
    [No Abstract]   [Full Text] [Related]  

  • 30. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Temperature effects at the NADP+ and NAD+ levels in the mycelium of P. nigricans Thom. strains grown on different carbon sources].
    Rogal' IG
    Antibiotiki; 1979 Jul; 24(7):483-7. PubMed ID: 37800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil.
    Hidese R; Mihara H; Kurihara T; Esaki N
    J Bacteriol; 2011 Feb; 193(4):989-93. PubMed ID: 21169495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
    West TP
    Microbiol Res; 2005; 160(4):337-42. PubMed ID: 16255137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: evidence of carbon catabolite repression control.
    Duetz WA; Marqués S; de Jong C; Ramos JL; van Andel JG
    J Bacteriol; 1994 Apr; 176(8):2354-61. PubMed ID: 8157604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of pyrimidine synthesis in Pseudomonas mendocina.
    Santiago MF; West TP
    J Basic Microbiol; 2002; 42(1):75-9. PubMed ID: 11925763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?
    Van Kuilenburg AB; Stroomer AE; Van Lenthe H; Abeling NG; Van Gennip AH
    Biochem J; 2004 Apr; 379(Pt 1):119-24. PubMed ID: 14705962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Initial reactions in the oxidation of naphthalene by Pseudomonas putida.
    Jeffrey AM; Yeh HJ; Jerina DM; Patel TR; Davey JF; Gibson DT
    Biochemistry; 1975 Feb; 14(3):575-84. PubMed ID: 234247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria.
    Volke DC; Olavarría K; Nikel PI
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures.
    Aranda-Olmedo I; Marín P; Ramos JL; Marqués S
    Appl Environ Microbiol; 2006 Nov; 72(11):7418-21. PubMed ID: 16997980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of pyrimidine bases and nucleosides by Pseudomonas fluorescens biotype F.
    West TP
    Microbios; 1988; 56(226):27-36. PubMed ID: 3148844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.