BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11759834)

  • 1. Modeling tumor growth and irradiation response in vitro--a combination of high-performance computing and web-based technologies including VRML visualization.
    Stamatakos GS; Zacharaki EI; Makropoulou MI; Mouravliansky NA; Marsh A; Nikita KS; Uzunoglu NK
    IEEE Trans Inf Technol Biomed; 2001 Dec; 5(4):279-89. PubMed ID: 11759834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating growth dynamics and radiation response of avascular tumour spheroids-model validation in the case of an EMT6/Ro multicellular spheroid.
    Zacharaki EI; Stamatakos GS; Nikita KS; Uzunoglu NK
    Comput Methods Programs Biomed; 2004 Dec; 76(3):193-206. PubMed ID: 15501506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy.
    Düchting W; Ulmer W; Lehrig R; Ginsberg T; Dedeleit E
    Strahlenther Onkol; 1992 Jun; 168(6):354-60. PubMed ID: 1320297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
    Na YH; Suh TS; Kapp DS; Xing L
    Phys Med Biol; 2013 Sep; 58(18):6525-40. PubMed ID: 24002571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probability dynamics of a repopulating tumor in case of fractionated external radiotherapy.
    Stavreva N; Stavrev P; Fallone BG
    Phys Med; 2009 Dec; 25(4):181-91. PubMed ID: 19345599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration.
    Antipas VP; Stamatakos GS; Uzunoglu NK; Dionysiou DD; Dale RG
    Phys Med Biol; 2004 Apr; 49(8):1485-504. PubMed ID: 15152687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer simulation of in vivo tumour growth and response to radiotherapy: new algorithms and parametric results.
    Dionysiou DD; Stamatakos GS; Uzunoglu NK; Nikita KS
    Comput Biol Med; 2006 May; 36(5):448-64. PubMed ID: 15916755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic modeling and validation of growth saturation and radiotherapeutic response of multicellular tumor spheroids.
    Zacharaki EI; Stamatakos GD; Nikita KS; Uzunoglu NK
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3039-42. PubMed ID: 17270919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation.
    Dionysiou DD; Stamatakos GS; Uzunoglu NK; Nikita KS; Marioli A
    J Theor Biol; 2004 Sep; 230(1):1-20. PubMed ID: 15275995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of clinical irradiation schemes applied to in vitro tumor spheroids.
    Düchting W; Lehrig R; Rademacher G; Ulmer W
    Strahlenther Onkol; 1989 Dec; 165(12):873-8. PubMed ID: 2603123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of fractionated radiotherapy: further results and their relevance to percutaneous irradiation and brachytherapy.
    Ginsberg T; Ulmer W; Düchting W
    Strahlenther Onkol; 1993 May; 169(5):304-10. PubMed ID: 8503090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue.
    Düchting W; Ginsberg T; Ulmer W
    Stem Cells; 1995 May; 13 Suppl 1():301-6. PubMed ID: 7488961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations.
    Vanderstraeten B; Reynaert N; Paelinck L; Madani I; De Wagter C; De Gersem W; De Neve W; Thierens H
    Med Phys; 2006 Sep; 33(9):3149-58. PubMed ID: 17022207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth laws in cancer: implications for radiotherapy.
    Castorina P; Deisboeck TS; Gabriele P; Guiot C
    Radiat Res; 2007 Sep; 168(3):349-56. PubMed ID: 17705631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.
    Yonai S; Matsufuji N; Namba M
    Med Phys; 2012 Aug; 39(8):5028-39. PubMed ID: 22894428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiogenic responses of normal tissue induced by fractionated irradiation--a simulation study. I. Acute effects.
    Düchting W; Ulmer W; Ginsberg T; Saile C
    Strahlenther Onkol; 1995 Aug; 171(8):460-7. PubMed ID: 7652669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Evolution of Tumour Composition During Fractionated Radiotherapy: Implications for Outcome.
    Lewin TD; Maini PK; Moros EG; Enderling H; Byrne HM
    Bull Math Biol; 2018 May; 80(5):1207-1235. PubMed ID: 29488054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BrachyGuide: a brachytherapy-dedicated DICOM RT viewer and interface to Monte Carlo simulation software.
    Pantelis E; Peppa V; Lahanas V; Pappas E; Papagiannis P
    J Appl Clin Med Phys; 2015 Jan; 16(1):5136. PubMed ID: 25679171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of tumor spheroids to radiation: modeling and parameter estimation.
    Bertuzzi A; Bruni C; Fasano A; Gandolfi A; Papa F; Sinisgalli C
    Bull Math Biol; 2010 Jul; 72(5):1069-91. PubMed ID: 19915922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DPM as a radiation transport engine for PRIMO.
    Rodriguez M; Sempau J; Bäumer C; Timmermann B; Brualla L
    Radiat Oncol; 2018 Dec; 13(1):256. PubMed ID: 30591056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.