These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11759929)

  • 1. A model of the muscle-fiber intracellular action potential waveform, including the slow repolarization phase.
    McGill KC; Lateva ZC
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1480-3. PubMed ID: 11759929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of the muscle action potential for describing the leading edge, terminal wave, and slow afterwave.
    McGill KC; Lateva ZC; Xiao S
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1357-65. PubMed ID: 11759917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of changes in intracellular action potential on potentials recorded by single-fiber, macro, and belly-tendon electrodes.
    Arabadzhiev TI; Dimitrov GV; Chakarov VE; Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2008 Jun; 37(6):700-12. PubMed ID: 18506714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling fibrillation potentials--analysis of time parameters in the muscle intracellular action potential.
    Rodríguez Falces J; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1361-70. PubMed ID: 17694856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling fibrillation potentials--a new analytical description for the muscle intracellular action potential.
    Rodríguez Falces J; Malanda Trigueros A; Gila Useros L; Rodríguez Carreño I; Navallas Irujo J
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):581-92. PubMed ID: 16602564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the origin of the extracellular action potential waveform: A modeling study.
    Gold C; Henze DA; Koch C; Buzsáki G
    J Neurophysiol; 2006 May; 95(5):3113-28. PubMed ID: 16467426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biphasic morphology of voluntary and spontaneous single muscle fiber action potentials.
    Dumitru D; King JC; van der Rijt W; Stegeman DF
    Muscle Nerve; 1994 Nov; 17(11):1301-7. PubMed ID: 7935552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel ideas for fast muscle action potential simulations using the line source model.
    Hammarberg B; Stålberg E
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1888-97. PubMed ID: 15543667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three algorithms for multi-motor unit detection and waveform marking.
    Brownell AA; Ni O; Bromberg MB
    Muscle Nerve; 2006 Apr; 33(4):538-45. PubMed ID: 16382444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the duration of intracellular action potentials in muscle fibres from single-fibre extracellular potentials.
    Rodríguez J; Navallas J; Gila L; Dimitrova NA; Malanda A
    J Neurosci Methods; 2011 Apr; 197(2):221-30. PubMed ID: 21396959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A technique to track individual motor unit action potentials in surface EMG by monitoring their conduction velocities and amplitudes.
    Beck RB; Houtman CJ; O'Malley MJ; Lowery MM; Stegeman DF
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):622-9. PubMed ID: 15825864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in intracellular action potential profile affect parameters used in turns/amplitude analysis.
    Arabadzhiev TI; Dimitrov GV; Chakarov VE; Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2008 Jun; 37(6):713-20. PubMed ID: 18506716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient parameterization of MUAP signal for identification of MU and volume conductor characteristics using neural networks.
    Reffad A; Bekka RE; Mebarkia K; Chikouche D
    J Neurosci Methods; 2007 Aug; 164(2):325-38. PubMed ID: 17544153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can standard surface EMG processing parameters be used to estimate motor unit global firing rate?
    Zhou P; Rymer WZ
    J Neural Eng; 2004 Jun; 1(2):99-110. PubMed ID: 15876628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular action potential generation and extinction strongly affect the sensitivity of M-wave characteristic frequencies to changes in the peripheral parameters with muscle fatigue.
    Arabadzhiev TI; Dimitrov GV; Dimitrova NA
    J Electromyogr Kinesiol; 2005 Apr; 15(2):159-69. PubMed ID: 15664146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis of EMG signals based on considerations of signal spectra.
    Gammans P; Qin SF; Wright DK
    Biomed Sci Instrum; 2003; 39():187-92. PubMed ID: 12724892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume conduction in an anatomically based surface EMG model.
    Lowery MM; Stoykov NS; Dewald JP; Kuiken TA
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2138-47. PubMed ID: 15605861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodiagnostic model for motor unit action potential (MUAP) generation.
    Basmajian JV; Gopal DN; Ghista DN
    Am J Phys Med; 1985 Dec; 64(6):279-94. PubMed ID: 4083335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.