These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 11760185)

  • 1. A new coastal marine ecosystem model study coupled with hydrodynamics and tidal flat ecosystem effect.
    Sohma A; Sekiguchi Y; Yamada H; Sato T; Nakata K
    Mar Pollut Bull; 2001; 43(7-12):187-208. PubMed ID: 11760185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: environmental fate of perfluorooctane sulfonate in aquatic ecosystems.
    Nakata H; Kannan K; Nasu T; Cho HS; Sinclair E; Takemurai A
    Environ Sci Technol; 2006 Aug; 40(16):4916-21. PubMed ID: 16955886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice.
    Sandman AN; Näslund J; Gren IM; Norling K
    Ambio; 2018 Dec; 47(8):884-892. PubMed ID: 29730794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benthic denitrification and organic matter mineralization in intertidal flats of an enclosed coastal inlet, Ago Bay, Japan.
    Patel AB
    Mar Pollut Bull; 2008; 57(1-5):116-24. PubMed ID: 18402984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the Great Barrier Reef shelf.
    Alongi DM; McKinnon AD
    Mar Pollut Bull; 2005; 51(1-4):239-52. PubMed ID: 15757725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of spilled oil on the tidal flat ecosystem--evaluation of wave and tidal actions using a tidal flat simulator.
    Cheong CJ; Okada M
    Water Sci Technol; 2001; 43(2):171-7. PubMed ID: 11380177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of a Eutrophic Bay in the Baltic Sea.
    Rydin E; Kumblad L; Wulff F; Larsson P
    Environ Sci Technol; 2017 Apr; 51(8):4559-4566. PubMed ID: 28350961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass.
    Yamamoto H; Yamamoto T; Mito Y; Asaoka S
    Mar Pollut Bull; 2016 Jun; 107(1):188-205. PubMed ID: 27143344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.
    Belley R; Snelgrove PV; Archambault P; Juniper SK
    PLoS One; 2016; 11(3):e0151110. PubMed ID: 26942608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-deficient waters along the Japanese coast and their effects upon the estuarine ecosystem.
    Suzuki T
    J Environ Qual; 2001; 30(2):291-302. PubMed ID: 11285889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon.
    Ubertini M; Lefebvre S; Gangnery A; Grangeré K; Le Gendre R; Orvain F
    PLoS One; 2012; 7(8):e44155. PubMed ID: 22952910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: implications for the restoration of eutrophic shallow lakes.
    Zhang X; Liu Z; Jeppesen E; Taylor WD
    Water Res; 2014 Mar; 50():135-46. PubMed ID: 24370657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan.
    Karim MR; Sekine M; Ukita M
    Mar Pollut Bull; 2002; 45(1-12):280-5. PubMed ID: 12398396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of fish preference and mortality under hypoxic water in the coastal environment.
    Karim MR; Sekine M; Ukita M
    Mar Pollut Bull; 2003; 47(1-6):25-9. PubMed ID: 12787593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microphytobenthos and phytoplankton in the Severn estuary, UK: present situation and possible consequences of a tidal energy barrage.
    Underwood GJ
    Mar Pollut Bull; 2010; 61(1-3):83-91. PubMed ID: 20074756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial growth efficiency in a partly eutrophicated bay of South China Sea: Implication for anthropogenic impacts and potential hypoxia events.
    Song XY; Liu HX; Zhong Y; Tan YH; Qin G; Li KZ; Shen PP; Huang LM; Wang YS
    Ecotoxicology; 2015 Oct; 24(7-8):1529-39. PubMed ID: 26024618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments.
    Karlson K; Bonsdorff E; Rosenberg R
    Ambio; 2007 Apr; 36(2-3):161-7. PubMed ID: 17520929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succession of macrobenthic fauna and nitrogen budget at two artificial tidal flats in Osaka Bay, Japan.
    Yamochi S
    Mar Pollut Bull; 2008; 57(1-5):137-41. PubMed ID: 18522861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.
    Paerl H
    Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal variability in macroalgal blooms in a eutrophied coastal estuary.
    Thornber CS; Guidone M; Deacutis C; Green L; Ramsay CN; Palmisciano M
    Harmful Algae; 2017 Sep; 68():82-96. PubMed ID: 28962992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.