These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1176089)

  • 1. Free-flow electrophoresis. I. Theoretical and experimental investigations of the influence of mechanical and electrokinetic variables on the efficiency of the method.
    Hannig K; Wirth H; Meyer BH; Zeiller K
    Hoppe Seylers Z Physiol Chem; 1975 Aug; 356(8):1209-23. PubMed ID: 1176089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free-flow electrophoresis. II. Analysis of the method with respect to preparative cell separation.
    Zeiller K; Löser R; Pascher G; Hannig K
    Hoppe Seylers Z Physiol Chem; 1975 Aug; 356(8):1225-44. PubMed ID: 1176090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation.
    Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM
    Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical evaluation of capillary electrophoresis performance.
    Datta R
    Biotechnol Prog; 1990; 6(6):485-93. PubMed ID: 1366839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrophoresis applied to the analysis and separation of cells].
    Wioland M
    Biomed Pharmacother; 1986; 40(2):64-74. PubMed ID: 3756315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro free-flow electrophoresis: theory and applications.
    Turgeon RT; Bowser MT
    Anal Bioanal Chem; 2009 May; 394(1):187-98. PubMed ID: 19290514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device.
    Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA
    Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast electrokinetics.
    Rouhi Youssefi M; Diez FJ
    Electrophoresis; 2016 Mar; 37(5-6):692-8. PubMed ID: 26840989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separating large microscale particles by exploiting charge differences with dielectrophoresis.
    Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH
    J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band-broadening effects in preparative free-flow zone electrophoresis.
    Poggel M; Melin T; Treutlein S
    Electrophoresis; 2002 Jul; 23(14):2252-8. PubMed ID: 12210230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of flow and diffusion on protein separation in a continuous flow electrophoresis cell: computation procedure.
    Biscans B; Alinat P; Bertrand J; Sanchez V
    Electrophoresis; 1988 Feb; 9(2):84-9. PubMed ID: 3234342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.
    Kong FZ; Yang Y; He YC; Zhang Q; Li GQ; Fan LY; Xiao H; Li S; Cao CX
    Electrophoresis; 2016 Sep; 37(17-18):2393-400. PubMed ID: 27465345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Stream Broadening in Free-Flow Electrophoretic Systems Based on the Method-of-Moments Formulation.
    Dutta D
    Methods Mol Biol; 2019; 1906():167-195. PubMed ID: 30488393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.