BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11761177)

  • 1. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    Biomaterials; 2002 Jan; 23(2):569-76. PubMed ID: 11761177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    Biomaterials; 2001 Jul; 22(13):1739-47. PubMed ID: 11396877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    J Mater Sci Mater Med; 1999 Dec; 10(12):793-6. PubMed ID: 15347953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive biocompatibility testing of a new PMMA-hA bone cement versus conventional PMMA cement in vitro.
    Jäger M; Wilke A
    J Biomater Sci Polym Ed; 2003; 14(11):1283-98. PubMed ID: 14768914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite.
    Moursi AM; Winnard AV; Winnard PL; Lannutti JJ; Seghi RR
    Biomaterials; 2002 Jan; 23(1):133-44. PubMed ID: 11762831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement.
    Liu Z; Tang Y; Kang T; Rao M; Li K; Wang Q; Quan C; Zhang C; Jiang Q; Shen H
    Colloids Surf B Biointerfaces; 2015 Jul; 131():39-46. PubMed ID: 25948316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)-based bone cement.
    Quan C; Tang Y; Liu Z; Rao M; Zhang W; Liang P; Wu N; Zhang C; Shen H; Jiang Q
    J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):576-84. PubMed ID: 25953071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering.
    Xing ZC; Han SJ; Shin YS; Koo TH; Moon S; Jeong Y; Kang IK
    J Biomater Sci Polym Ed; 2013; 24(1):61-76. PubMed ID: 22289639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of varying percentage hydroxyapatite in poly(ethylmethacrylate) bone cement on human osteoblast-like cells.
    Opara TN; Dalby MJ; Harper EJ; Di Silvio L; Bonfield W
    J Mater Sci Mater Med; 2003 Mar; 14(3):277-82. PubMed ID: 15348475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.
    Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW
    Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.
    Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R
    Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model.
    Sa Y; Yu N; Wolke JGC; Chanchareonsook N; Goh BT; Wang Y; Yang F; Jansen JA
    Tissue Eng Part C Methods; 2017 May; 23(5):262-273. PubMed ID: 28372521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement.
    Lam WM; Pan HB; Fong MK; Cheung WS; Wong KL; Li ZY; Luk KD; Chan WK; Wong CT; Yang C; Lu WW
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):76-83. PubMed ID: 21053263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement.
    Wong CT; Lu WW; Chan WK; Cheung KM; Luk KD; Lu DS; Rabie AB; Deng LF; Leong JC
    J Biomed Mater Res A; 2004 Mar; 68(3):513-21. PubMed ID: 14762931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid.
    Sa Y; Yang F; de Wijn JR; Wang Y; Wolke JG; Jansen JA
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():190-8. PubMed ID: 26838840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial strength of novel PMMA/HA/nanoclay bone cement.
    Wang CX; Tong J
    Biomed Mater Eng; 2008; 18(6):367-75. PubMed ID: 19197113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bone substitute composed of polymethyl-methacrylate bone cement and Bio-Gene allogeneic bone promotes osteoblast viability, adhesion and differentiation.
    Wang Z; Li Z; Zhang X; Yu Y; Feng Q; Chen J; Xie W
    Biomed Mater Eng; 2021; 32(1):29-37. PubMed ID: 33427728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast behaviour on HA/PE composite surfaces with different HA volumes.
    Di Silvio L; Dalby MJ; Bonfield W
    Biomaterials; 2002 Jan; 23(1):101-7. PubMed ID: 11762828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement.
    Tsukimura N; Yamada M; Aita H; Hori N; Yoshino F; Chang-Il Lee M; Kimoto K; Jewett A; Ogawa T
    Biomaterials; 2009 Jul; 30(20):3378-89. PubMed ID: 19303139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.