BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11761322)

  • 1. Substrates but not inhibitors alter the redox potentials of monoamine oxidases.
    Sablin SO; Ramsay RR
    Antioxid Redox Signal; 2001 Oct; 3(5):723-9. PubMed ID: 11761322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors alter the spectrum and redox properties of monoamine oxidase A.
    Ramsay RR; Hunter DJ
    Biochim Biophys Acta; 2002 Dec; 1601(2):178-84. PubMed ID: 12445480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.
    Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS
    Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
    Olteanu H; Wolthers KR; Munro AW; Scrutton NS; Banerjee R
    Biochemistry; 2004 Feb; 43(7):1988-97. PubMed ID: 14967039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration in spectral properties on ligand binding reveals flexibility in monoamine oxidase.
    Ramsay RR; Jones TZ; Hynson RM
    Med Sci Monit; 2005 Sep; 11(9):SR15-20. PubMed ID: 16127378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of a flavin semiquinone in the resting state of monoamine oxidase B by electron paramagnetic resonance and electron nuclear double resonance spectroscopy.
    DeRose VJ; Woo JC; Hawe WP; Hoffman BM; Silverman RB; Yelekci K
    Biochemistry; 1996 Aug; 35(34):11085-91. PubMed ID: 8780511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman spectroscopic evidence for an anionic flavin semiquinone in bovine liver monoamine oxidase.
    Yue KT; Bhattacharyya AK; Zhelyaskov VR; Edmondson DE
    Arch Biochem Biophys; 1993 Jan; 300(1):178-85. PubMed ID: 8424650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanistic study of monoamine oxidase: significance for MAO A and MAO B in situ].
    Ramsay RR
    Vopr Med Khim; 1997; 43(6):457-70. PubMed ID: 9503563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stable tyrosyl radical in monoamine oxidase A.
    Rigby SE; Hynson RM; Ramsay RR; Munro AW; Scrutton NS
    J Biol Chem; 2005 Feb; 280(6):4627-31. PubMed ID: 15556933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of oxazolidinones in the active site of monoamine oxidase.
    Jones TZ; Fleming P; Eyermann CJ; Gravestock MB; Ramsay RR
    Biochem Pharmacol; 2005 Aug; 70(3):407-16. PubMed ID: 15950194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of two different chromophores in the resting state of monoamine oxidase B by fluorescence spectroscopy.
    Woo JC; Silverman RB
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1574-8. PubMed ID: 8060341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW; Lam A; Mirica LM; Klinman JP
    Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoamine oxidase A inhibitory potency and flavin perturbation are influenced by different aspects of pirlindole inhibitor structure.
    Hynson RM; Wouters J; Ramsay RR
    Biochem Pharmacol; 2003 Jun; 65(11):1867-74. PubMed ID: 12781338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.