BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11762446)

  • 1. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum.
    McCollom TM; Simoneit BR; Shock EL
    Energy Fuels; 1999; 13(2):401-10. PubMed ID: 11762446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confined-pyrolysis as an experimental method for hydrothermal organic synthesis.
    Leif RN; Simoneit BR
    Orig Life Evol Biosph; 1995 Oct; 25(5):417-29. PubMed ID: 11536697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins.
    Nelkenbaum E; Dror I; Berkowitz B
    Chemosphere; 2007 Jun; 68(2):210-7. PubMed ID: 17335868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea.
    Boitsov S; Jensen HK; Klungsøyr J
    Mar Environ Res; 2009 Dec; 68(5):236-45. PubMed ID: 19643470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California.
    Simoneit BR; Leif RN; Ishiwatari R
    Org Geochem; 1996; 24(3):377-88. PubMed ID: 11541747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift.
    Simoneit BR; Aboul-Kassim TA; Tiercelin JJ
    Appl Geochem; 2000 Mar; 15(3):355-68. PubMed ID: 17654787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous high-temperature and high-pressure organic geochemistry of hydrothermal vent systems.
    Simoneit BR
    Geochim Cosmochim Acta; 1993; 57():3231-43. PubMed ID: 11539452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of phenanthrene in river sediment.
    Yuan SY; Chang JS; Yen JH; Chang BV
    Chemosphere; 2001 Apr; 43(3):273-8. PubMed ID: 11302571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl.
    Xu F; Shi X; Zhang Q; Wang W
    Chemosphere; 2016 Nov; 162():345-54. PubMed ID: 27538266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for organic synthesis in high temperature aqueous media--facts and prognosis.
    Simoneit BR
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):119-40. PubMed ID: 11536666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean.
    Simoneit BR; Fetzer JC
    Org Geochem; 1996; 24(10-11):1065-77. PubMed ID: 11541114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China.
    Luo XJ; Chen SJ; Mai BX; Yang QS; Sheng GY; Fu JM
    Environ Pollut; 2006 Jan; 139(1):9-20. PubMed ID: 15996803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycyclic aromatic hydrocarbons and petroleum biomarkers in São Sebastião Channel, Brazil: assessment of petroleum contamination.
    da Silva DA; Bícego MC
    Mar Environ Res; 2010 Jun; 69(5):277-86. PubMed ID: 20005568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of phenanthrene and its primary metabolite (1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions.
    Parikh SJ; Chorover J; Burgos WD
    J Contam Hydrol; 2004 Aug; 72(1-4):1-22. PubMed ID: 15240164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US.
    Brewster CS; Sharma VK; Cizmas L; McDonald TJ
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4974-4988. PubMed ID: 29204943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis-gas chromatography-mass spectrometry with electron-ionization or resonance-enhanced-multi-photon-ionization for characterization of polycyclic aromatic hydrocarbons in the Baltic Sea.
    Otto S; Streibel T; Erdmann S; Klingbeil S; Schulz-Bull D; Zimmermann R
    Mar Pollut Bull; 2015 Oct; 99(1-2):35-42. PubMed ID: 26277803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds.
    Cataldo F; Angelini G; García-Hernández DA; Manchado A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():68-79. PubMed ID: 23603577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical ripening of dredged sediments. Part 2. Degradation of polycyclic aromatic hydrocarbons and total petroleum hydrocarbons in slurried and consolidated sediments.
    Vermeulen J; van Gool MP; Mentink GH; Joziasse J; Bruning H; Rulkens WH; Grotenhuis JT
    Environ Toxicol Chem; 2007 Dec; 26(12):2540-9. PubMed ID: 18020678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand.
    Muangchinda C; Pansri R; Wongwongsee W; Pinyakong O
    J Appl Microbiol; 2013 May; 114(5):1311-24. PubMed ID: 23294245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon.
    Al Farraj DA; Hadibarata T; Yuniarto A; Alkufeidy RM; Alshammari MK; Syafiuddin A
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2305-2314. PubMed ID: 32812060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.