BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11762599)

  • 1. Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis.
    Den Haan R; Van Zyl WH
    Appl Microbiol Biotechnol; 2001 Nov; 57(4):521-7. PubMed ID: 11762599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes.
    La Grange DC; Pretorius IS; Claeyssens M; van Zyl WH
    Appl Environ Microbiol; 2001 Dec; 67(12):5512-9. PubMed ID: 11722900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae.
    La Grange DC; Claeyssens M; Pretorius IS; Van Zyl WH
    Appl Microbiol Biotechnol; 2000 Aug; 54(2):195-200. PubMed ID: 10968632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium.
    Görgens JF; van Zyl WH; Knoetze JH; Hahn-Hägerdal B
    Biotechnol Bioeng; 2001 May; 73(3):238-45. PubMed ID: 11257606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant.
    Morosoli R; Zalce E; Durand S
    Curr Genet; 1993; 24(1-2):94-9. PubMed ID: 8358837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae.
    la Grange DC; Pretorius IS; van Zyl WH
    Appl Environ Microbiol; 1996 Mar; 62(3):1036-44. PubMed ID: 8975597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation.
    Walfridsson M; Anderlund M; Bao X; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):218-24. PubMed ID: 9299780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of XYL1.
    Dahn KM; Davis BP; Pittman PE; Kenealy WR; Jeffries TW
    Appl Biochem Biotechnol; 1996; 57-58():267-76. PubMed ID: 8669900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive expression of the Trichoderma reesei beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media.
    Rose SH; van Zyl WH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):461-8. PubMed ID: 11954792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme.
    He J; Yu B; Zhang K; Ding X; Chen D
    BMC Biotechnol; 2009 Jun; 9():56. PubMed ID: 19527524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei.
    de Faria FP; Te'O VS; Bergquist PL; Azevedo MO; Nevalainen KM
    Lett Appl Microbiol; 2002; 34(2):119-23. PubMed ID: 11849507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei.
    Zeilinger S; Mach RL; Schindler M; Herzog P; Kubicek CP
    J Biol Chem; 1996 Oct; 271(41):25624-9. PubMed ID: 8810338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K
    Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and heterologous expression of xylanase from Pichia stipitis in Escherichia coli.
    Basaran P; Hang YD; Basaran N; Worobo RW
    J Appl Microbiol; 2001 Feb; 90(2):248-55. PubMed ID: 11168728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostable carbohydrate binding module increases the thermostability and substrate-binding capacity of Trichoderma reesei xylanase 2.
    Jun H; Bing Y; Keying Z; Xuemei D; Daiwen C
    N Biotechnol; 2009 Oct; 26(1-2):53-9. PubMed ID: 19426845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes.
    Govinden R; Pillay B; van Zyl WH; Pillay D
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):76-80. PubMed ID: 11234962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis.
    Amore R; Kötter P; Küster C; Ciriacy M; Hollenberg CP
    Gene; 1991 Dec; 109(1):89-97. PubMed ID: 1756986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.