BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11763038)

  • 21. Removal and fate of Cryptosporidium parvum, Clostridium perfringens and small-sized centric diatoms (Stephanodiscus hantzschii) in slow sand filters.
    Hijnen WA; Dullemont YJ; Schijven JF; Hanzens-Brouwer AJ; Rosielle M; Medema G
    Water Res; 2007 May; 41(10):2151-62. PubMed ID: 17400275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium.
    Abudalo RA; Ryan JN; Harvey RW; Metge DW; Landkamer L
    Water Res; 2010 Feb; 44(4):1104-13. PubMed ID: 19853880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water.
    Abeledo-Lameiro MJ; Ares-Mazás E; Gómez-Couso H
    J Photochem Photobiol B; 2016 Oct; 163():92-9. PubMed ID: 27543761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oocysts of Cryptosporidium parvum and model sand surfaces in aqueous solutions: an atomic force microscope (AFM) study.
    Considine RF; Dixon DR; Drummond CJ
    Water Res; 2002 Aug; 36(14):3421-8. PubMed ID: 12230187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y; Gomez LL; McAuliffe IT; Tsang VC
    Lett Appl Microbiol; 2004; 39(2):156-62. PubMed ID: 15242454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.
    Abebe LS; Su YH; Guerrant RL; Swami NS; Smith JA
    Environ Sci Technol; 2015 Nov; 49(21):12958-67. PubMed ID: 26398590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chitosan and metal salt coagulant impacts on Cryptosporidium and microsphere removal by filtration.
    Brown TJ; Emelko MB
    Water Res; 2009 Feb; 43(2):331-8. PubMed ID: 18996552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium-Mediated Biophysical Binding of Cryptosporidium parvum Oocysts to Surfaces Is Sensitive to Oocyst Age.
    Sarkhosh T; Zhang XF; Jellison KL; Jedlicka SS
    Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31253676
    [No Abstract]   [Full Text] [Related]  

  • 31. A cascade-like silicon filter for improved recovery of oocysts from environmental waters.
    Pires NM; Dong T
    Environ Technol; 2014; 35(5-8):781-90. PubMed ID: 24645460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of ultrasound irradiation to inactivate Cryptosporidium parvum oocysts in effluents from municipal wastewater treatment plants.
    Abeledo-Lameiro MJ; Ares-Mazás E; Goméz-Couso H
    Ultrason Sonochem; 2018 Nov; 48():118-126. PubMed ID: 30080534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.
    Rodgers M; Walsh G; Healy MG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):80-5. PubMed ID: 21104498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of MS2 phage, Escherichia coli, Clostridium perfringens, Cryptosporidium parvum, and Giardia intestinalis in a gravel and a sandy soil.
    Hijnen WA; Brouwer-Hanzens AJ; Charles KJ; Medema GJ
    Environ Sci Technol; 2005 Oct; 39(20):7860-8. PubMed ID: 16295848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from water samples.
    Karanis P; Kimura A
    Lett Appl Microbiol; 2002; 34(6):444-9. PubMed ID: 12028427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous prediction of Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic waters.
    Kim JH; Von Gunten U; Mariñas BJ
    Environ Sci Technol; 2004 Apr; 38(7):2232-41. PubMed ID: 15112829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of recoveries for the determination of protozoa Cryptosporidium and Giardia in water using method 1623.
    Hu J; Feng Y; Ong SL; Ng WJ; Song L; Tan X; Chu X
    J Microbiol Methods; 2004 Sep; 58(3):321-5. PubMed ID: 15279936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.
    McLaughlin SJ; Kalita PK; Kuhlenschmidt MS
    J Environ Manage; 2013 Dec; 131():121-8. PubMed ID: 24157412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryptosporidium parvum oocyst inactivation in field soil and its relation to soil characteristics: analyses using the geographic information systems.
    Kato S; Jenkins M; Fogarty E; Bowman D
    Sci Total Environ; 2004 Apr; 321(1-3):47-58. PubMed ID: 15050384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vertical transport of Cryptosporidium parvum oocysts through sediments.
    Kim SB; Corapcioglu MY
    Environ Technol; 2002 Dec; 23(12):1435-46. PubMed ID: 12523514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.