These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11763043)

  • 1. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.
    Bunce NJ; Chartrand M; Keech P
    Water Res; 2001 Dec; 35(18):4410-6. PubMed ID: 11763043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide.
    Wang JW; Bejan D; Bunce NJ
    Environ Sci Technol; 2003 Oct; 37(19):4500-6. PubMed ID: 14572107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte.
    Ter Heijne A; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2007 Jun; 41(11):4130-4. PubMed ID: 17612201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment.
    Liu F; Zhou J; Zhou L; Zhang S; Liu L; Wang M
    J Hazard Mater; 2015 Dec; 299():404-11. PubMed ID: 26150283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrochemical treatment of acid mine drainage dominated with iron.
    Lefebvre O; Neculita CM; Yue X; Ng HY
    J Hazard Mater; 2012 Nov; 241-242():411-7. PubMed ID: 23084427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.
    Liu F; Zhou J; Jin T; Zhang S; Liu L
    Water Sci Technol; 2016; 73(6):1442-53. PubMed ID: 27003087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrolysis of iron promoting for the advanced treatment of landfill leachate].
    Chu YY; Xu DM
    Huan Jing Ke Xue; 2007 Aug; 28(8):1710-4. PubMed ID: 17926398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel application of H2O2-Fe(II) process for arsenate removal from synthetic acid mine drainage (AMD) water.
    Dong H; Guan X; Wang D; Li C; Yang X; Dou X
    Chemosphere; 2011 Nov; 85(7):1115-21. PubMed ID: 21840033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.
    Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E
    Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper electrowinning from acid mine drainage: a case study from the closed mine "Cerovo".
    Gorgievski M; Bozić D; Stanković V; Bogdanović G
    J Hazard Mater; 2009 Oct; 170(2-3):716-21. PubMed ID: 19493615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual electrodes oxidation of dye wastewater with gas diffusion cathode.
    Shen Z; Yang J; Hu X; Lei Y; Ji X; Jia J; Wang W
    Environ Sci Technol; 2005 Mar; 39(6):1819-26. PubMed ID: 15819242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage.
    Pozo G; Pongy S; Keller J; Ledezma P; Freguia S
    Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell.
    Ben Sasson M; Calmano W; Adin A
    J Hazard Mater; 2009 Nov; 171(1-3):704-9. PubMed ID: 19577360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process.
    Chandrasekara Pillai K; Chung SJ; Moon IS
    Chemosphere; 2008 Nov; 73(9):1505-11. PubMed ID: 18762320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment.
    Brillas E; Casado J
    Chemosphere; 2002 Apr; 47(3):241-8. PubMed ID: 11996144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor.
    Tao HC; Zhang LJ; Gao ZY; Wu WM
    Bioresour Technol; 2011 Nov; 102(22):10334-9. PubMed ID: 21940162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process.
    Watanabe T; Motoyama H; Kuroda M
    Water Res; 2001 Dec; 35(17):4102-10. PubMed ID: 11791840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments.
    Wang H; Wang JL
    J Hazard Mater; 2008 Jun; 154(1-3):44-50. PubMed ID: 17996367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.