These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 11763270)

  • 1. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition.
    Balasoiu CF; Zagury GJ; Deschênes L
    Sci Total Environ; 2001 Dec; 280(1-3):239-55. PubMed ID: 11763270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility and fractionation of arsenic, chromium and copper in thermally treated soil.
    Nordmark D; Kumpiene J; Andreas L; Lagerkvist A
    Waste Manag Res; 2011 Jan; 29(1):3-12. PubMed ID: 20880937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An uptake and elimination kinetics approach to assess the bioavailability of chromium, copper, and arsenic to earthworms (Eisenia andrei) in contaminated field soils.
    Kilpi-Koski J; Penttinen OP; Väisänen AO; van Gestel CAM
    Environ Sci Pollut Res Int; 2019 May; 26(15):15095-15104. PubMed ID: 30924042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emissions of chromium, copper, arsenic, and PCDDs/Fs from open burning of CCA-treated wood.
    Wasson SJ; Linak WP; Gullett BK; King CJ; Touati A; Huggins FE; Chen Y; Shah N; Huffman GP
    Environ Sci Technol; 2005 Nov; 39(22):8865-76. PubMed ID: 16323788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles.
    Chirenje T; Ma LQ; Clark C; Reeves M
    Environ Pollut; 2003; 124(3):407-17. PubMed ID: 12758021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic and chromium partitioning in a podzolic soil contaminated by chromated copper arsenate.
    Hopp L; Nico PS; Marcus MA; Peiffer S
    Environ Sci Technol; 2008 Sep; 42(17):6481-6. PubMed ID: 18800518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal(loid)s inhalation bioaccessibility and oxidative potential of particulate matter from chromated copper arsenate (CCA)-contaminated soils.
    Gosselin M; Zagury GJ
    Chemosphere; 2020 Jan; 238():124557. PubMed ID: 31422311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea.
    Kim H; Kim DJ; Koo JH; Park JG; Jang YC
    Sci Total Environ; 2007 Mar; 374(2-3):273-81. PubMed ID: 17292945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles.
    Pouschat P; Zagury GJ
    Environ Sci Technol; 2006 Jul; 40(13):4317-23. PubMed ID: 16856753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand.
    Robinson B; Greven M; Green S; Sivakumaran S; Davidson P; Clothier B
    Sci Total Environ; 2006 Jul; 364(1-3):113-23. PubMed ID: 16150477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic availability from chromated copper arsenate (CCA)-treated wood.
    Rahman FA; Allan DL; Rosen CJ; Sadowsky MJ
    J Environ Qual; 2004; 33(1):173-80. PubMed ID: 14964372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of metals in soil and ground water near chromated copper arsenate-treated utility poles.
    Zagury GJ; Samson R; Deschênes L
    J Environ Qual; 2003; 32(2):507-14. PubMed ID: 12708674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.
    Tsang DC; Hartley NR
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3987-95. PubMed ID: 24297462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review.
    Katz SA; Salem H
    J Appl Toxicol; 2005; 25(1):1-7. PubMed ID: 15669035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
    Zagury GJ; Dobran S; Estrela S; Deschênes L
    Environ Toxicol Chem; 2008 Apr; 27(4):799-807. PubMed ID: 18333683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure.
    Shibata T; Solo-Gabriele HM; Fleming LE; Cai Y; Townsend TG
    Sci Total Environ; 2007 Jan; 372(2-3):624-35. PubMed ID: 17161449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.