BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11763353)

  • 1. Radiation exposure assessment using cytological and molecular biomarkers.
    Blakely WF; Prasanna PG; Grace MB; Miller AC
    Radiat Prot Dosimetry; 2001; 97(1):17-23. PubMed ID: 11763353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological dosimetry using human interphase peripheral blood lymphocytes.
    Prasanna PG; Hamel CJ; Escalada ND; Duffy KL; Blakely WF
    Mil Med; 2002 Feb; 167(2 Suppl):10-2. PubMed ID: 11873484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Premature chromosome condensation associated with fluorescence in situ hybridisation detects cytogenetic abnormalities after a CT scan: evaluaton of the low-dose effect.
    M'kacher R; Violot D; Aubert B; Girinsky T; Dossou J; Béron-Gaillard N; Carde P; Parmentier C
    Radiat Prot Dosimetry; 2003; 103(1):35-40. PubMed ID: 12596987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triage biodosimetry using centromeric/telomeric PNA probes and Giemsa staining to score dicentrics or excess fragments in non-stimulated lymphocyte prematurely condensed chromosomes.
    Karachristou I; Karakosta M; Pantelias A; Hatzi VI; Karaiskos P; Dimitriou P; Pantelias G; Terzoudi GI
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():107-14. PubMed ID: 26520380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness and limits of biological dosimetry based on cytogenetic methods.
    Léonard A; Rueff J; Gerber GB; Léonard ED
    Radiat Prot Dosimetry; 2005; 115(1-4):448-54. PubMed ID: 16381765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cytogenetic control in exposure to ionizing radiation sources (review of literature)].
    Nugis VIu
    Med Tr Prom Ekol; 2006; (10):30-6. PubMed ID: 17136843
    [No Abstract]   [Full Text] [Related]  

  • 7. Analysis of chromosome damage for biodosimetry using imaging flow cytometry.
    Beaton LA; Ferrarotto C; Kutzner BC; McNamee JP; Bellier PV; Wilkins RC
    Mutat Res; 2013 Aug; 756(1-2):192-5. PubMed ID: 23618924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodosimetry for high dose accidental exposures by drug induced premature chromosome condensation (PCC) assay.
    Balakrishnan S; Shirsath K; Bhat N; Anjaria K
    Mutat Res; 2010 Jun; 699(1-2):11-6. PubMed ID: 20338261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome aberrations determined by sFISH and G-banding in lymphocytes from workers with internal deposits of plutonium.
    Tawn EJ; Curwen GB; Jonas P; Riddell AE; Hodgson L
    Int J Radiat Biol; 2016 Jun; 92(6):312-20. PubMed ID: 27043761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleic acid molecular biomarkers for diagnostic biodosimetry applications: use of the fluorogenic 5'-nuclease polymerase chain reaction assay.
    Blakely WF; Miller AC; Luo L; Lukas J; Hornby ZD; Hamel CJ; Nelson JT; Escalada NE; Prasanna PG
    Mil Med; 2002 Feb; 167(2 Suppl):16-9. PubMed ID: 11873502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an automatable micro-PCC biodosimetry assay for rapid individualized risk assessment in large-scale radiological emergencies.
    Pantelias A; Terzoudi GI
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt A):65-71. PubMed ID: 30389164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrospective biological dosimetry of absorbed radiation.
    Rao BS; Natarajan AT
    Radiat Prot Dosimetry; 2001; 95(1):17-23. PubMed ID: 11468799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodosimetry using chromosome aberrations in human lymphocytes.
    Senthamizhchelvan S; Pant GS; Rath GK; Julka PK; Nair O; Joshi RC; Malhotra A; Pandey RM
    Radiat Prot Dosimetry; 2007; 123(2):241-5. PubMed ID: 16954150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation-induced damage, repair and exchange formation in different chromosomes of human fibroblasts determined by fluorescence in situ hybridization.
    Kovacs MS; Evans JW; Johnstone IM; Brown JM
    Radiat Res; 1994 Jan; 137(1):34-43. PubMed ID: 8265786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased complexity of radiation-induced chromosome aberrations consistent with a mechanism of sequential formation.
    Anderson RM; Papworth DG; Stevens DL; Sumption ND; Goodhead DT
    Cytogenet Genome Res; 2006; 112(1-2):35-44. PubMed ID: 16276088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foundations of identifying individual chromosomes by imaging flow cytometry with applications in radiation biodosimetry.
    Beaton-Green LA; Rodrigues MA; Lachapelle S; Wilkins RC
    Methods; 2017 Jan; 112():18-24. PubMed ID: 27524557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence in situ hybridisation in detecting chromosome aberrations caused by occupational exposure to ionising radiation.
    Zeljezić D; Garaj-Vrhovac V
    Arh Hig Rada Toksikol; 2006 Mar; 57(1):65-8. PubMed ID: 16605168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose response relationships for chromosome aberrations induced by low doses of alpha-particle radiation.
    Tawn EJ; Thierens H
    Radiat Prot Dosimetry; 2009 Aug; 135(4):268-71. PubMed ID: 19622542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Premature chromosome condensation in human resting peripheral blood lymphocytes without mitogen stimulation for chromosome aberration analysis using specific whole chromosome DNA hybridization probes.
    Pathak R; Prasanna PG
    Methods Mol Biol; 2014; 1105():171-81. PubMed ID: 24623228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-chromosomal variation in aberration frequencies in human lymphocytes exposed to charged particles of LET between 0.5 and 55 keV/μm.
    Deperas-Kaminska M; Zaytseva EM; Deperas-Standylo J; Mitsyn GV; Molokanov AG; Timoshenko GN; Wojcik A
    Int J Radiat Biol; 2010 Nov; 86(11):975-85. PubMed ID: 20670111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.