These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 11763987)

  • 1. Effect of light wavelength on suppression and phase delay of the melatonin rhythm.
    Wright HR; Lack LC
    Chronobiol Int; 2001 Sep; 18(5):801-8. PubMed ID: 11763987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of light wavelength in phase advancing the melatonin rhythm.
    Wright HR; Lack LC; Kennaway DJ
    J Pineal Res; 2004 Mar; 36(2):140-4. PubMed ID: 14962066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light emitting diodes can be used to phase delay the melatonin rhythm.
    Wright HR; Lack LC; Partridge KJ
    J Pineal Res; 2001 Nov; 31(4):350-5. PubMed ID: 11703565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bright-light exposure during daytime sleeping affects nocturnal melatonin secretion after simulated night work.
    Nagashima S; Osawa M; Matsuyama H; Ohoka W; Ahn A; Wakamura T
    Chronobiol Int; 2018 Feb; 35(2):229-239. PubMed ID: 29144169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of various wave lengths of light and various duration of impulse times on suppression of n-acetyltransferase activity in the rat pineal gland].
    Jarmak A; Zawilska JB; Nowak JZ
    Klin Oczna; 1998; 100(2):77-80. PubMed ID: 9695540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of pineal melatonin in Peromyscus leucopus by different monochromatic wavelengths of visible and near-ultraviolet light (UV-A).
    Benshoff HM; Brainard GC; Rollag MD; Lynch GR
    Brain Res; 1987 Sep; 420(2):397-402. PubMed ID: 3676772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian phase, sleepiness, and light exposure assessment in night workers with and without shift work disorder.
    Gumenyuk V; Roth T; Drake CL
    Chronobiol Int; 2012 Aug; 29(7):928-36. PubMed ID: 22823876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light suppression of nocturnal pineal and plasma melatonin in rats depends on wavelength and time of day.
    Honma S; Kanematsu N; Katsuno Y; Honma K
    Neurosci Lett; 1992 Dec; 147(2):201-4. PubMed ID: 1491808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of different light intensities in the morning on dim light melatonin onset.
    Kozaki T; Toda N; Noguchi H; Yasukouchi A
    J Physiol Anthropol; 2011; 30(3):97-102. PubMed ID: 21636952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The suppression of nocturnal pineal melatonin in the Syrian hamster: dose-response curves at 500 and 360 nm.
    Podolin PL; Rollag MD; Brainard GC
    Endocrinology; 1987 Jul; 121(1):266-70. PubMed ID: 3595519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-shifting effects of light on the circadian rhythms of 5-methoxytryptophol and melatonin in the chick pineal gland.
    Zawilska JB; Vivien-Roels B; Skene DJ; Pévet P; Nowak JZ
    J Pineal Res; 2000 Aug; 29(1):1-7. PubMed ID: 10949534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regulation mechanism of melatonin rhythm in the pineal gland by light: experimental studies by in vivo microdialysis].
    Kanematsu N
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):46-64. PubMed ID: 8119657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness.
    van de Werken M; Giménez MC; de Vries B; Beersma DG; Gordijn MC
    Chronobiol Int; 2013 Aug; 30(7):843-54. PubMed ID: 23705821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salivary melatonin suppression under 100-Hz flickering blue light and non-flickering blue light conditions.
    Kozaki T; Hidaka Y; Takakura JY; Kusano Y
    Neurosci Lett; 2020 Mar; 722():134857. PubMed ID: 32097701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans.
    Figueiro MG; Bullough JD; Parsons RH; Rea MS
    Neuroreport; 2004 Feb; 15(2):313-6. PubMed ID: 15076759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light.
    Lockley SW; Brainard GC; Czeisler CA
    J Clin Endocrinol Metab; 2003 Sep; 88(9):4502-5. PubMed ID: 12970330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of the human circadian system to short-wavelength (420-nm) light.
    Brainard GC; Sliney D; Hanifin JP; Glickman G; Byrne B; Greeson JM; Jasser S; Gerner E; Rollag MD
    J Biol Rhythms; 2008 Oct; 23(5):379-86. PubMed ID: 18838601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are modifications of melatonin circadian rhythm in the middle years of life related to habitual patterns of light exposure?
    Kawinska A; Dumont M; Selmaoui B; Paquet J; Carrier J
    J Biol Rhythms; 2005 Oct; 20(5):451-60. PubMed ID: 16267384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak relationships between suppression of melatonin and suppression of sleepiness/fatigue in response to light exposure.
    Rüger M; Gordijn MC; Beersma DG; de Vries B; Daan S
    J Sleep Res; 2005 Sep; 14(3):221-7. PubMed ID: 16120096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of light with various wavelengths and impulse times on nocturnal suppression of N'acetyltransferase activation by serotonin in the pineal gland of the chick].
    Jarmak A; Zawilska JB; Nowak JZ
    Klin Oczna; 1996; 98(6):417-22. PubMed ID: 9340413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.