BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11764145)

  • 41. Field validation of sediment zinc toxicity.
    Burton GA; Nguyen LT; Janssen C; Baudo R; McWilliam R; Bossuyt B; Beltrami M; Green A
    Environ Toxicol Chem; 2005 Mar; 24(3):541-53. PubMed ID: 15779753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system.
    Poot A; Gillissen F; Koelmans AA
    Environ Pollut; 2007 Aug; 148(3):779-87. PubMed ID: 17418923
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Are accumulated sulfide-bound metals metabolically available in the benthic oligochaete Tubifex tubifex?
    De Jonge M; Eyckmans M; Blust R; Bervoets L
    Environ Sci Technol; 2011 Apr; 45(7):3131-7. PubMed ID: 21375326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting the toxicity of chromium in sediments.
    Berry WJ; Boothman WS; Serbst JR; Edwards PA
    Environ Toxicol Chem; 2004 Dec; 23(12):2981-92. PubMed ID: 15648774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.
    De Jonge M; Blust R; Bervoets L
    Environ Pollut; 2010 May; 158(5):1381-91. PubMed ID: 20116151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monosulfidic black ooze accumulations in sediments of the Geographe Bay area, Western Australia.
    Ward NJ; Bush RT; Burton ED; Appleyard S; Wong S; Sullivan LA; Cheeseman PJ
    Mar Pollut Bull; 2010 Nov; 60(11):2130-6. PubMed ID: 20727554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability.
    De Jonge M; Teuchies J; Meire P; Blust R; Bervoets L
    Water Res; 2012 May; 46(7):2205-14. PubMed ID: 22349002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California.
    Meador JP; Ernest DW; Kagley AN
    Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal speciation in anoxic sediments: when sulfides can be construed as oxides.
    Peltier E; Dahl AL; Gaillard JF
    Environ Sci Technol; 2005 Jan; 39(1):311-6. PubMed ID: 15667111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.
    Hong YS; Kinney KA; Reible DD
    Environ Toxicol Chem; 2011 Mar; 30(3):564-75. PubMed ID: 21298701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China.
    Zhu MX; Liu J; Yang GP; Li T; Yang RJ
    Mar Environ Res; 2012 Sep; 80():46-55. PubMed ID: 22840195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mobility and bioavailability of trace metals in sulfidic coastal sediments.
    Sundelin B; Eriksson AK
    Environ Toxicol Chem; 2001 Apr; 20(4):748-56. PubMed ID: 11345449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA.
    Ingersoll CG; MacDonald DD; Brumbaugh WG; Johnson BT; Kemble NE; Kunz JL; May TW; Wang N; Smith JR; Sparks DW; Ireland DS
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):156-67. PubMed ID: 12115041
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential kinetic availability of metals in sulphidic freshwater sediments.
    Naylor C; Davison W; Motelica-Heino M; Van Den Berg GA; Van Der Heijdt LM
    Sci Total Environ; 2006 Mar; 357(1-3):208-20. PubMed ID: 15936802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.
    Sparrevik M; Eek E; Grini RS
    Environ Technol; 2009 Jul; 30(8):831-40. PubMed ID: 19705667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil).
    Ribeiro AP; Figueiredo AM; dos Santos JO; Dantas E; Cotrim ME; Figueira RC; Silva Filho EV; Wasserman JC
    Mar Pollut Bull; 2013 Mar; 68(1-2):55-63. PubMed ID: 23498658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of hydrochloric acid for determinining solid-phase arsenic partitioning in sulfidic sediments.
    Wilkin RT; Ford RG
    Environ Sci Technol; 2002 Nov; 36(22):4921-7. PubMed ID: 12487318
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Can acid volatile sulfides (AVS) influence metal concentrations in the macrophyte Myriophyllum aquaticum?
    Teuchies J; De Jonge M; Meire P; Blust R; Bervoets L
    Environ Sci Technol; 2012 Aug; 46(16):9129-37. PubMed ID: 22853009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wastewater analysis for volatile organic sulfides using purge-and-trap with gas chromatography/mass spectrometry.
    Cheng X; Peterkin E; Narangajavana K
    Water Environ Res; 2007 Apr; 79(4):442-6. PubMed ID: 17489280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potential risks of metal toxicity in contaminated sediments of Deûle river in northern France.
    Louriño-Cabana B; Lesven L; Charriau A; Billon G; Ouddane B; Boughriet A
    J Hazard Mater; 2011 Feb; 186(2-3):2129-37. PubMed ID: 21257261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.