BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 1176468)

  • 1. Biocompatibility and state fatigue behavior of glassy carbon.
    Kenner GH; Brown SD; Pasco WD; Marshall AE; Lovell JE
    J Biomed Mater Res; 1975 Jan; 9(1):111-20. PubMed ID: 1176468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Scanning electron microscopic studies of the biocompatibility of carbon glass structures in bone].
    Thieme V; Hofmann H; Heiner H; Müller T; Pompe W; Zieger M
    Zahn Mund Kieferheilkd Zentralbl; 1981; 69(6):472-84. PubMed ID: 6458973
    [No Abstract]   [Full Text] [Related]  

  • 3. Two-year biocompatibility study of ORNL graphite.
    Kenner GH; Williams WS; Lovell JE; Eatherly WP
    J Biomed Mater Res; 1975 Jul; 9(4):67-72. PubMed ID: 1176511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Histological studies on the tissue compatibility of solid-mass glass-carbon compounds in bones].
    Thieme V; Hofmann H; Heiner H; Muller P; Findeisen B; Zieger M
    Stomatol DDR; 1982 Apr; 32(4):283-92. PubMed ID: 6956053
    [No Abstract]   [Full Text] [Related]  

  • 5. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Histological studies of the biocompatibility of glass-carbon and bio-vitreous ceramics in muscle tissue. 1: Implantation of solids].
    Raabe G; Müller P; Thieme V; Hofmann H; Findeisen B; Berger G
    Stomatol DDR; 1986 Feb; 36(2):53-60. PubMed ID: 3461591
    [No Abstract]   [Full Text] [Related]  

  • 7. [Polychrome sequential marking--a method of representing bone reaction to the implantation of bioactive ceramic materials].
    Köhler S; Retemeyer K; Gebhardt F; Sikora M; Berger G
    Zahn Mund Kieferheilkd Zentralbl; 1982; 70(8):821-8. PubMed ID: 6220529
    [No Abstract]   [Full Text] [Related]  

  • 8. [Histological studies of the biocompatibility of glass-carbon and of bio-vitreous ceramics in muscle tissue. 2: Implantation of the powders].
    Raabe G; Müller P; Thieme V; Hofmann H; Findeisen B; Berger G
    Stomatol DDR; 1986 Mar; 36(3):117-23. PubMed ID: 3461599
    [No Abstract]   [Full Text] [Related]  

  • 9. [An experimental study of bioglass implants in bone (author's transl)].
    Courpied JP; Deplus P; Barthas J; Forest M; Carlioz A; Vacher-Lavenu MC; Crouzette J; Fournier P; Baufume M
    Int Orthop; 1982; 6(1):1-7. PubMed ID: 7107093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic biocarbon materials.
    Olcott EL
    J Biomed Mater Res; 1974; 8(3):209-17. PubMed ID: 4218237
    [No Abstract]   [Full Text] [Related]  

  • 11. Bone bonding ability of bioactive bone cements.
    Tamura J; Kitsugi T; Iida H; Fujita H; Nakamura T; Kokubo T; Yoshihara S
    Clin Orthop Relat Res; 1997 Oct; (343):183-91. PubMed ID: 9345224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.
    Ritchie RO; Dauskardt RH; Pennisi FJ
    J Biomed Mater Res; 1992 Jan; 26(1):69-76. PubMed ID: 1577836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.
    Leach JK; Kaigler D; Wang Z; Krebsbach PH; Mooney DJ
    Biomaterials; 2006 Jun; 27(17):3249-55. PubMed ID: 16490250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress of researches on carbon/carbon composites used in human loaded bones].
    Sui J; Li M; Lü Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):686-9. PubMed ID: 15357462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility and osteoconductivity of the pyrost bone substitutes.
    Tsuang YH; Lin FH; Tai HC; Sun JS; Liu HC; Hang YS
    Histol Histopathol; 1997 Jan; 12(1):19-24. PubMed ID: 9046039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary observations of bone ingrowth into porous materials.
    Robertson DM; Pierre L; Chahal R
    J Biomed Mater Res; 1976 May; 10(3):335-44. PubMed ID: 1270453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin.
    Xie Z; Liu X; Jia W; Zhang C; Huang W; Wang J
    J Control Release; 2009 Oct; 139(2):118-26. PubMed ID: 19545593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bone biopsy chamber: an improved method of collecting osseous tissue.
    Kaigler D; Lang BR
    Int J Oral Maxillofac Implants; 1989; 4(3):183-90. PubMed ID: 2639118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.