These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 1176468)

  • 21. Mechanical properties of bone after implantation of apatite-wollastonite containing glass ceramic-fibrin mixture.
    Ono K; Yamamuro T; Nakamura T; Kokubo T
    J Biomed Mater Res; 1990 Jan; 24(1):47-63. PubMed ID: 2154498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the osteoconductive properties of bioactive glass fibers.
    Pazzaglia UE; Gabbi C; Locardi B; Di Nucci A; Zatti G; Cherubino P
    J Biomed Mater Res; 1989 Nov; 23(11):1289-97. PubMed ID: 2606922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoinductive biomaterials--properties and relevance in bone repair.
    Habibovic P; de Groot K
    J Tissue Eng Regen Med; 2007; 1(1):25-32. PubMed ID: 18038389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biocompatibility of bioactive glass-ceramic in cornea and conjunctiva].
    Bigar F; Krähenmann A; Landolt E; Witmer R
    Ber Zusammenkunft Dtsch Ophthalmol Ges; 1978; (75):192-6. PubMed ID: 743093
    [No Abstract]   [Full Text] [Related]  

  • 26. Mineral apposition rates provide significant information on long-term effects in BMP-induced bone regeneration.
    Schopper C; Moser D; Spassova-Tzekova E; Russmueller G; Goriwoda W; Lagogiannis G; Ewers R; Redl H
    J Biomed Mater Res A; 2009 Jun; 89(3):679-86. PubMed ID: 18442117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants.
    Ducheyne P; Hench LL; Kagan A; Martens M; Bursens A; Mulier JC
    J Biomed Mater Res; 1980 May; 14(3):225-37. PubMed ID: 7364787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspects of bone healing and bone substitute incorporation. An experimental study in rabbit skull bone defects.
    Isaksson S
    Swed Dent J Suppl; 1992; 84():1-46. PubMed ID: 1334579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of FRP composite structural biomaterials: fatigue strength of the fiber/matrix interfacial bond in simulated in vivo environments.
    Latour RA; Black J
    J Biomed Mater Res; 1993 Oct; 27(10):1281-91. PubMed ID: 8245042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the intraosseous biocompatibility of Dyract and Super EBA.
    Pertot WJ; Stephan G; Tardieu C; Proust JP
    J Endod; 1997 May; 23(5):315-9. PubMed ID: 9545935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone.
    Välimäki VV; Moritz N; Yrjans JJ; Dalstra M; Aro HT
    Biomaterials; 2005 Nov; 26(33):6693-703. PubMed ID: 15941582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of porous polymeric materials in prosthesis attachment.
    Sauer BW; Weinstein AM; Klawitter JJ; Hulbert SF; Leonard RB; Bagwell JG
    J Biomed Mater Res; 1974; 8(3):145-53. PubMed ID: 4455695
    [No Abstract]   [Full Text] [Related]  

  • 33. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unalloyed pyrolytic carbon for implanted mechanical heart valves.
    Ma L; Sines GH
    J Heart Valve Dis; 1999 Sep; 8(5):578-85. PubMed ID: 10517402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatibility of carbon fibre and carbon fibre microparticles.
    Wolter D
    Aktuelle Probl Chir Orthop; 1983; 26():28-36. PubMed ID: 6136228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An approach for time-dependent bone modeling and remodeling--theoretical development.
    Beaupré GS; Orr TE; Carter DR
    J Orthop Res; 1990 Sep; 8(5):651-61. PubMed ID: 2388105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone and biologically compatible materials in dentistry.
    Binderman I
    Curr Opin Dent; 1991 Dec; 1(6):836-40. PubMed ID: 1687261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys.
    Shabalovskaya SA
    Biomed Mater Eng; 1996; 6(4):267-89. PubMed ID: 8980835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glassy carbon: a potential dental implant material.
    Hucke EE; Fuys RA; Craig RG
    J Biomed Mater Res; 1973; 7(3):263-74. PubMed ID: 4577873
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.