These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1176477)

  • 1. Thermal properties of cancellous bone.
    Clattenburg R; Cohen J; Conner S; Cook N
    J Biomed Mater Res; 1975 Mar; 9(2):169-82. PubMed ID: 1176477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of thermal properties for human femora.
    Biyikli S; Modest MF; Tarr R
    J Biomed Mater Res; 1986; 20(9):1335-45. PubMed ID: 3782185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of thermal properties of composting bulking materials.
    Ahn HK; Sauer TJ; Richard TL; Glanville TD
    Bioresour Technol; 2009 Sep; 100(17):3974-81. PubMed ID: 19362828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury.
    Lundskog J
    Scand J Plast Reconstr Surg; 1972; 9():1-80. PubMed ID: 4661159
    [No Abstract]   [Full Text] [Related]  

  • 5. [Thermal properties of human teeth and dental cements].
    Minesaki Y
    Shika Zairyo Kikai; 1990 Jul; 9(4):633-46. PubMed ID: 2134829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of thermal conductivity of bovine cortical bone.
    Davidson SR; James DF
    Med Eng Phys; 2000 Dec; 22(10):741-7. PubMed ID: 11334760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures.
    Choi JH; Bischof JC
    Cryobiology; 2008 Oct; 57(2):79-83. PubMed ID: 18656857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound.
    Divkovic GW; Liebler M; Braun K; Dreyer T; Huber PE; Jenne JW
    Ultrasound Med Biol; 2007 Jun; 33(6):981-6. PubMed ID: 17434665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material.
    Davidson SR; Sherar MD
    Int J Hyperthermia; 2003; 19(5):551-62. PubMed ID: 12944169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat distribution in bone during preparation of implant sites: heat analysis by real-time thermography.
    Watanabe F; Tawada Y; Komatsu S; Hata Y
    Int J Oral Maxillofac Implants; 1992; 7(2):212-9. PubMed ID: 1398838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature changes in dental implants following exposure to hot substances in an ex vivo model.
    Feuerstein O; Zeichner K; Imbari C; Ormianer Z; Samet N; Weiss EI
    Clin Oral Implants Res; 2008 Jun; 19(6):629-33. PubMed ID: 18371098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature changes at the implant-bone interface during simulated surface decontamination with an Er:YAG laser.
    Kreisler M; Al Haj H; d'Hoedt B
    Int J Prosthodont; 2002; 15(6):582-7. PubMed ID: 12475166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation.
    Mertyna P; Dewhirst MW; Halpern E; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):550-9. PubMed ID: 18608586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.