These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1176495)

  • 1. Bone growth into porous carbon, polyethylene, and polypropylene prostheses.
    Cestero HJ; Salyer KE; Toranto IR
    J Biomed Mater Res; 1975 Jul; 9(4):1-7. PubMed ID: 1176495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comments on "characteristics of tissue growth into proplast and porous polyethylene implants in bone".
    Homsy CA
    J Biomed Mater Res; 1979 Nov; 13(6):987-92. PubMed ID: 511865
    [No Abstract]   [Full Text] [Related]  

  • 3. Bone growth into porous high-density polyethylene.
    Spector M; Flemming WR; Kreutner A
    J Biomed Mater Res; 1976 Jul; 10(4):595-603. PubMed ID: 947921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile strength of bone (bone/porous polyethylene) interface.
    Skinner HB; Shackelford JF; Lin HJ; Cutler AD
    Biomater Med Devices Artif Organs; 1979; 7(1):113-9. PubMed ID: 454776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of tissue growth into Proplast and porous polyethylene implants in bone.
    Spector M; Harmon SL; Kreutner A
    J Biomed Mater Res; 1979 Sep; 13(5):677-92. PubMed ID: 479215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early tissue infiltrate in porous polyethylene implants into bone: a scanning electron microscope study.
    Spector M; Flemming WR; Sauer BW
    J Biomed Mater Res; 1975 Sep; 9(5):537-42. PubMed ID: 1176523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture of porous polyethylene-bone composite.
    Mayer RD; Moyle DD; Sauer BW
    J Biomed Mater Res; 1983 Jan; 17(1):59-70. PubMed ID: 6826578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of the early vascularization of porous carbon and bone as a graft.
    Lozano AJ; Cestero HJ; Salyer KE
    J Biomed Mater Res; 1976 Jul; 10(4):545-8. PubMed ID: 780357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental implantation of porous materials into bone. Proplast for low modulus fixation of prostheses.
    Rhinelander FW; Nelson CL
    Acta Orthop Belg; 1974; 40(5-6):771-98. PubMed ID: 4620054
    [No Abstract]   [Full Text] [Related]  

  • 10. Preliminary observations of bone ingrowth into porous materials.
    Robertson DM; Pierre L; Chahal R
    J Biomed Mater Res; 1976 May; 10(3):335-44. PubMed ID: 1270453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface mechanics of porous titanium implants.
    Clemow AJ; Weinstein AM; Klawitter JJ; Koeneman J; Anderson J
    J Biomed Mater Res; 1981 Jan; 15(1):73-82. PubMed ID: 7348706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Physical properties of suture material made of polypropylene with olemorphocycline].
    Stolbovoĭ AV
    Voen Med Zh; 1981 Mar; (3):49. PubMed ID: 6452734
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction of the urinary tract to polypropylene sutures.
    Bartone FF; Stinson W
    Invest Urol; 1976 Jul; 14(1):44-6. PubMed ID: 783077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of porous polymeric materials in prosthesis attachment.
    Sauer BW; Weinstein AM; Klawitter JJ; Hulbert SF; Leonard RB; Bagwell JG
    J Biomed Mater Res; 1974; 8(3):145-53. PubMed ID: 4455695
    [No Abstract]   [Full Text] [Related]  

  • 15. An evaluation of skeletal attachment to LTI pyrolytic carbon, porous titanium, and carbon-coated porous titanium implants.
    Anderson RC; Cook SD; Weinstein AM; Haddad RJ
    Clin Orthop Relat Res; 1984; (182):242-57. PubMed ID: 6692619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The susceptibility of smooth implant surfaces to periimplant fibrosis and migration of polyethylene wear debris.
    Bobyn JD; Jacobs JJ; Tanzer M; Urban RM; Aribindi R; Sumner DR; Turner TM; Brooks CE
    Clin Orthop Relat Res; 1995 Feb; (311):21-39. PubMed ID: 7634577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrovascularization and osteogenesis in high-density porous polyethylene implants.
    Oliveira RV; de Souza Nunes LS; Filho HN; de Andrade Holgado L; Ribeiro DA; Matsumoto MA
    J Craniofac Surg; 2009 Jul; 20(4):1120-4. PubMed ID: 19553849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy and histophysiology of the periosteum: quantification of the periosteal blood supply to the adjacent bone with 85Sr and gamma spectrometry.
    Chanavaz M
    J Oral Implantol; 1995; 21(3):214-9. PubMed ID: 8699515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of bone growth into porous high density polyethylene.
    Klawitter JJ; Bagwell JG; Weinstein AM; Sauer BW
    J Biomed Mater Res; 1976 Mar; 10(2):311-23. PubMed ID: 1254618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear.
    Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ
    J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.