BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11765020)

  • 1. Mutagenicity and carcinogenicity of biological reactive intermediate's derived from a "non-genotoxic" carcinogen.
    Lau SS; Yoon HS; Patel SK; Everitt JI; Walker CL; Monks TJ
    Adv Exp Med Biol; 2001; 500():83-92. PubMed ID: 11765020
    [No Abstract]   [Full Text] [Related]  

  • 2. Transformation of kidney epithelial cells by a quinol thioether via inactivation of the tuberous sclerosis-2 tumor suppressor gene.
    Yoon HS; Monks TJ; Walker CL; Lau SS
    Mol Carcinog; 2001 May; 31(1):37-45. PubMed ID: 11398196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carcinogenicity of a nephrotoxic metabolite of the "nongenotoxic" carcinogen hydroquinone.
    Lau SS; Monks TJ; Everitt JI; Kleymenova E; Walker CL
    Chem Res Toxicol; 2001 Jan; 14(1):25-33. PubMed ID: 11170505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in gene expression during chemical-induced nephrocarcinogenicity in the Eker rat.
    Patel SK; Ma N; Monks TJ; Lau SS
    Mol Carcinog; 2003 Nov; 38(3):141-54. PubMed ID: 14587099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the spontaneous Tsc2 knockout (Eker) rat model of hereditary renal cell carcinoma for the study of renal carcinogens.
    McDorman KS; Wolf DC
    Toxicol Pathol; 2002; 30(6):675-80. PubMed ID: 12512868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of renal cell transformation following exposure to trichloroethene in vivo and its metabolite S-(dichlorovinyl)-L-cysteine in vitro.
    Mally A; Walker CL; Everitt JI; Dekant W; Vamvakas S
    Toxicology; 2006 Jul; 224(1-2):108-18. PubMed ID: 16730402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal carcinogenicity of trichloroethylene: update, mode of action, and fundamentals for occupational standard setting.
    Harth V; Brüning T; Bolt HM
    Rev Environ Health; 2005; 20(2):103-18. PubMed ID: 16121833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats.
    Tanaka T; Iwasa Y; Kondo S; Hiai H; Toyokuni S
    Oncogene; 1999 Jun; 18(25):3793-7. PubMed ID: 10391689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of a modifier gene(s) affecting early renal carcinogenesis in the Tsc2 mutant (Eker) rat model.
    Kikuchi Y; Sudo A; Mitani H; Hino O
    Int J Oncol; 2004 Jan; 24(1):75-80. PubMed ID: 14654943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carcinogen-specific gene expression profiles in short-term treated Eker and wild-type rats indicative of pathways involved in renal tumorigenesis.
    Stemmer K; Ellinger-Ziegelbauer H; Ahr HJ; Dietrich DR
    Cancer Res; 2007 May; 67(9):4052-68. PubMed ID: 17483316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell proliferation is insufficient, but loss of tuberin is necessary, for chemically induced nephrocarcinogenicity.
    Yoon HS; Monks TJ; Everitt JI; Walker CL; Lau SS
    Am J Physiol Renal Physiol; 2002 Aug; 283(2):F262-70. PubMed ID: 12110509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of cell proliferation in the kidneys of rodents with bromodeoxyuridine immunohistochemistry of tritiated thymidine autoradiography after exposure to renal toxins, tumor promoters, and carcinogens.
    Ward JM; Weghorst CM; Diwan BA; Konishi N; Lubet RA; Henneman JR; Devor DE
    Prog Clin Biol Res; 1991; 369():369-88. PubMed ID: 1946533
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemically induced cell proliferation in carcinogenesis in the male rat kidney.
    Short BG; Swenberg JA
    Prog Clin Biol Res; 1991; 369():357-67. PubMed ID: 1946532
    [No Abstract]   [Full Text] [Related]  

  • 14. Alpha 2u-globulin nephropathy and carcinogenicity following exposure to decalin (decahydronaphthalene) in F344/N rats.
    Dill JA; Lee KM; Renne RA; Miller RA; Fuciarelli AF; Gideon KM; Chan PC; Burka LT; Roycroft JH
    Toxicol Sci; 2003 Apr; 72(2):223-34. PubMed ID: 12660359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic mutation of the tuberous sclerosis (Tsc2) tumor suppressor gene in chemically induced rat renal carcinoma cell.
    Urakami S; Tokuzen R; Tsuda H; Igawa M; Hino O
    J Urol; 1997 Jul; 158(1):275-8. PubMed ID: 9186374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure.
    Ozden S; Turgut Kara N; Sezerman OU; Durasi İM; Chen T; Demirel G; Alpertunga B; Chipman JK; Mally A
    Toxicol Appl Pharmacol; 2015 Dec; 289(2):203-12. PubMed ID: 26431795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided analysis of mutagenicity and cell transformation data for assessing their relationship with carcinogenicity.
    Taningher M; Malacarne D; Perrotta A; Parodi S
    Environ Mol Mutagen; 1999; 33(3):226-39. PubMed ID: 10334625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically induced cell proliferation as a criterion in selecting doses for long-term bioassays.
    Swenberg JA; Maronpot RR
    Prog Clin Biol Res; 1991; 369():245-51. PubMed ID: 1946523
    [No Abstract]   [Full Text] [Related]  

  • 19. Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate.
    Li JL; Okada S; Hamazaki S; Ebina Y; Midorikawa O
    Cancer Res; 1987 Apr; 47(7):1867-9. PubMed ID: 3815378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stage-specific roles of fibulin-5 during oxidative stress-induced renal carcinogenesis in rats.
    Ohara H; Akatsuka S; Nagai H; Liu YT; Jiang L; Okazaki Y; Yamashita Y; Nakamura T; Toyokuni S
    Free Radic Res; 2011 Feb; 45(2):211-20. PubMed ID: 20942562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.