These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1176512)

  • 1. Factors influencing the creep behavior of poly(methyl methacrylate) cements.
    Treharne RW; Brown N
    J Biomed Mater Res; 1975 Jul; 9(4):81-88. PubMed ID: 1176512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the ingredients and determination of the residual components of acrylic bone cements.
    Brauer GM; Termini DJ; Dickson G
    J Biomed Mater Res; 1977 Jul; 11(4):577-607. PubMed ID: 873947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl methacrylate concentrations in tissues adjacent to bone cement.
    Petty W
    J Biomed Mater Res; 1980 Jul; 14(4):427-34. PubMed ID: 7400196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of initiation chemistry on the fracture toughness, fatigue strength, and residual monomer content of a novel high-viscosity, two-solution acrylic bone cement.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 2002 Mar; 59(3):411-21. PubMed ID: 11774298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the shelf life of a two-solution bone cement.
    Shim JB; Warner SJ; Hasenwinkel JM; Gilbert JL
    Biomaterials; 2005 Jul; 26(19):4181-7. PubMed ID: 15664645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of P/L ratio and peroxide/amine concentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterial formulations.
    Silikas N; Al-Kheraif A; Watts DC
    Biomaterials; 2005 Jan; 26(2):197-204. PubMed ID: 15207466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements.
    Pascual B; Vázquez B; Gurruchaga M; Goñi I; Ginebra MP; Gil FJ; Planell JA; Levenfeld B; San Román J
    Biomaterials; 1996 Mar; 17(5):509-16. PubMed ID: 8991482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of initial temperature on free radical decay in PMMA bone cement.
    Turner RC; White FB; Park JB
    J Biomed Mater Res; 1982 Sep; 16(5):639-46. PubMed ID: 6290499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep characteristics of hand- and vacuum-mixed acrylic bone cement at elevated stress levels.
    Norman TL; Kish V; Blaha JD; Gruen TA; Hustosky K
    J Biomed Mater Res; 1995 Apr; 29(4):495-501. PubMed ID: 7622534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element temperature analysis of a total hip replacement and measurement of PMMA curing temperatures.
    Swenson LW; Schurman DJ; Piziali Rl
    J Biomed Mater Res; 1981 Jan; 15(1):83-96. PubMed ID: 7348707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyisobutylene-toughened poly(methyl methacrylate): III. PMMA-l-PIB networks as bone cements.
    Kennedy JP; Askew MJ; Richard GC
    J Biomater Sci Polym Ed; 1993; 4(5):445-9. PubMed ID: 8241061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined influence of barium sulfate content and co-monomer concentration on properties of PMMA bone cements for vertebroplasty.
    Cisneros-Pineda OG; Cauich-Rodríguez JV; Cervantes-Uc JM; Vázquez B; Román JS
    J Biomater Sci Polym Ed; 2011; 22(12):1563-80. PubMed ID: 20633330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites.
    Monvisade P; Siriphannon P; Jermsungnern R; Rattanabodee S
    J Mater Sci Mater Med; 2007 Oct; 18(10):1955-9. PubMed ID: 17554595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and macroscopic properties of PMMA bone cement: free-radical generation and temperature change versus mixing ratio.
    Turner RC; Atkins PE; Ackley MA; Park JB
    J Biomed Mater Res; 1981 May; 15(3):425-32. PubMed ID: 6292229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creep studies of multiphase acrylic systems.
    Oysaed H; Ruyter IE
    J Biomed Mater Res; 1989 Jul; 23(7):719-33. PubMed ID: 2738084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces.
    Kusleika R; Stupp SI
    J Biomed Mater Res; 1983 May; 17(3):441-58. PubMed ID: 6863348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.