These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1176518)

  • 1. Slow crack growth in acrylic bone cement.
    Beaumont PW; Young RJ
    J Biomed Mater Res; 1975 Sep; 9(5):423-39. PubMed ID: 1176518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life.
    James SP; Jasty M; Davies J; Piehler H; Harris WH
    J Biomed Mater Res; 1992 May; 26(5):651-62. PubMed ID: 1512284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtomography assessment of failure in acrylic bone cement.
    Sinnett-Jones PE; Browne M; Ludwig W; Buffière JY; Sinclair I
    Biomaterials; 2005 Nov; 26(33):6460-6. PubMed ID: 15967499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading.
    Hertzler J; Miller MA; Mann KA
    J Orthop Res; 2002 Jul; 20(4):676-82. PubMed ID: 12168654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of temperature and specimen size on the flexural properties of PMMA bone cement.
    Brown SA; Bargar WL
    J Biomed Mater Res; 1984; 18(5):523-36. PubMed ID: 6376514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers.
    Pourdeyhimi B; Wagner HD
    J Biomed Mater Res; 1989 Jan; 23(1):63-80. PubMed ID: 2708405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone-particle-impregnated bone cement: an in vitro study.
    Liu YK; Park JB; Njus GO; Stienstra D
    J Biomed Mater Res; 1987 Feb; 21(2):247-61. PubMed ID: 3818684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of mixing technique on some properties of PMMA bone cement.
    Eyerer P; Jin R
    J Biomed Mater Res; 1986 Oct; 20(8):1057-94. PubMed ID: 3782171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo behavior of acrylic bone cement in total hip arthroplasty.
    Ries MD; Young E; Al-Marashi L; Goldstein P; Hetherington A; Petrie T; Pruitt L
    Biomaterials; 2006 Jan; 27(2):256-61. PubMed ID: 16039712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanisms of fatigue crack initiation and propagation in bone cements.
    Bhambri SK; Gilbertson LN
    J Biomed Mater Res; 1995 Feb; 29(2):233-7. PubMed ID: 7738071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of failure characteristics of a range of cancellous bone-bone cement composites.
    Lucksanasombool P; Higgs WA; Ignat M; Higgs RJ; Swain MV
    J Biomed Mater Res A; 2003 Jan; 64(1):93-104. PubMed ID: 12483701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo versus in vitro polymerization of acrylic bone cement: effect on material properties.
    Bargar WL; Brown SA; Paul HA; Voegli T; Hseih Y; Sharkey N
    J Orthop Res; 1986; 4(1):86-9. PubMed ID: 3950811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces.
    Kusleika R; Stupp SI
    J Biomed Mater Res; 1983 May; 17(3):441-58. PubMed ID: 6863348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained pressurization of polymethylmethacrylate: a comparison of low- and moderate-viscosity bone cements.
    Bean DJ; Hollis JM; Woo SL; Convery FR
    J Orthop Res; 1988; 6(4):580-4. PubMed ID: 3379511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of bone cement: a review.
    Saha S; Pal S
    J Biomed Mater Res; 1984 Apr; 18(4):435-62. PubMed ID: 6376513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite acrylic cement with added hydroxyapatite: a study of the polymerization temperature.
    Giunti A; Moroni A; Olmi R; Vicenzi G
    Ital J Orthop Traumatol; 1983 Sep; 9(3):369-75. PubMed ID: 6319328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.