These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1176518)

  • 21. A crack model of a bone cement interface.
    Clech JP; Keer LM; Lewis JL
    J Biomech Eng; 1984 Aug; 106(3):235-43. PubMed ID: 6492769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of centrifugation on the fracture properties of acrylic bone cements.
    Rimnac CM; Wright TM; McGill DL
    J Bone Joint Surg Am; 1986 Feb; 68(2):281-7. PubMed ID: 3944165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatigue properties and stem subsidence in wire coil reinforced PMMA bone cement: a preliminary in vitro study.
    Kim JK; Park JB
    Biomed Mater Eng; 1996; 6(6):453-62. PubMed ID: 9138655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement.
    Molino LN; Topoleski LD
    J Biomed Mater Res; 1996 May; 31(1):131-7. PubMed ID: 8731157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Failure of ceramic hip endoprostheses by slow crack growth--lifetime prediction.
    Seidelmann U; Richter H; Soltész U
    J Biomed Mater Res; 1982 Sep; 16(5):705-13. PubMed ID: 7130221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular and mechanical property changes during aging of bone cement in vitro and in vivo.
    Looney MA; Park JB
    J Biomed Mater Res; 1986; 20(5):555-63. PubMed ID: 3011807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term compressive creep deformation and damage in acrylic bone cements.
    Chwirut DJ
    J Biomed Mater Res; 1984 Jan; 18(1):25-37. PubMed ID: 6699030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue of acrylic bone cement--effect of frequency and environment.
    Johnson JA; Provan JW; Krygier JJ; Chan KH; Miller J
    J Biomed Mater Res; 1989 Aug; 23(8):819-31. PubMed ID: 2777828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow crack growth behaviour of hydroxyapatite ceramics.
    Benaqqa C; Chevalier J; Saädaoui M; Fantozzi G
    Biomaterials; 2005 Nov; 26(31):6106-12. PubMed ID: 15890401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative strength of anterior spinal fixation with bone graft or polymethylmethacrylate. Experimental operations and observations on dogs.
    Wang GJ; Reger SI; Shao ZH; Morton CL; Stamp WG
    Clin Orthop Relat Res; 1984 Sep; (188):303-8. PubMed ID: 6380866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation.
    Davies JP; O'Connor DO; Burke DW; Harris WH
    J Biomed Mater Res; 1989 Apr; 23(4):379-97. PubMed ID: 2708414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators.
    Deb S; Lewis G; Janna SW; Vazquez B; San Roman J
    J Biomed Mater Res A; 2003 Nov; 67(2):571-7. PubMed ID: 14566799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of strontia on various properties of surgical simplex P acrylic bone cement and experimental variants.
    Lewis G; Xu J; Madigan S; Towler MR
    Acta Biomater; 2007 Nov; 3(6):970-9. PubMed ID: 17512808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new bioactive bone cement: its histological and mechanical characterization.
    Nishimura N; Yamamuro T; Taguchi Y; Ikenaga M; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1991; 2(4):219-29. PubMed ID: 10149398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(methyl methacrylate)--aqueous phase blends: in situ curing porous materials.
    De Wijn JR
    J Biomed Mater Res; 1976 Jul; 10(4):625-35. PubMed ID: 947924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium fluoride sustained-release bone cement: an experimental study in vitro and in vivo.
    Magnan B; Gabbi C; Regis D
    Acta Orthop Belg; 1994; 60(1):72-9; discussion 80. PubMed ID: 8171990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.