These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 11765851)

  • 61. Time-dependent AI-Modeling of the anticancer efficacy of synthesized gallic acid analogues.
    Sherin L; Sohail A; Shujaat S
    Comput Biol Chem; 2019 Apr; 79():137-146. PubMed ID: 30818108
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches.
    Sampson DL; Parker TJ; Upton Z; Hurst CP
    PLoS One; 2011; 6(9):e24973. PubMed ID: 21969867
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Distributed support vector machines.
    Navia-Vazquez A; Gutierrez-Gonzalez D; Parrado-Hernandez E; Navarro-Abellan JJ
    IEEE Trans Neural Netw; 2006 Jul; 17(4):1091-1097. PubMed ID: 16856672
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.
    Paiva JS; Cardoso J; Pereira T
    Int J Med Inform; 2018 Jan; 109():30-38. PubMed ID: 29195703
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Direct parallel perceptrons (DPPs): fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks.
    Fernandez-Delgado M; Ribeiro J; Cernadas E; Ameneiro SB
    IEEE Trans Neural Netw; 2011 Nov; 22(11):1837-48. PubMed ID: 21984498
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.
    Li Y; Zhu Z; Hou A; Zhao Q; Liu L; Zhang L
    Comput Math Methods Med; 2018; 2018():1461470. PubMed ID: 29853983
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Virtual screening for cytochromes p450: successes of machine learning filters.
    Burton J; Ijjaali I; Petitet F; Michel A; Vercauteren DP
    Comb Chem High Throughput Screen; 2009 May; 12(4):369-82. PubMed ID: 19442071
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relevance Vector Machines: Sparse Classification Methods for QSAR.
    Burden FR; Winkler DA
    J Chem Inf Model; 2015 Aug; 55(8):1529-34. PubMed ID: 26158341
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Towards the application of one-dimensional sonomyography for powered upper-limb prosthetic control using machine learning models.
    Guo JY; Zheng YP; Xie HB; Koo TK
    Prosthet Orthot Int; 2013 Feb; 37(1):43-9. PubMed ID: 22683737
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase.
    King RD; Muggleton S; Lewis RA; Sternberg MJ
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11322-6. PubMed ID: 1454814
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines.
    Dal Moro F; Abate A; Lanckriet GR; Arandjelovic G; Gasparella P; Bassi P; Mancini M; Pagano F
    Kidney Int; 2006 Jan; 69(1):157-60. PubMed ID: 16374437
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TSVR: an efficient Twin Support Vector Machine for regression.
    Peng X
    Neural Netw; 2010 Apr; 23(3):365-72. PubMed ID: 19616409
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Architectures and accuracy of artificial neural network for disease classification from omics data.
    Yu H; Samuels DC; Zhao YY; Guo Y
    BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microarray data classification using automatic SVM kernel selection.
    Nahar J; Ali S; Chen YP
    DNA Cell Biol; 2007 Oct; 26(10):707-12. PubMed ID: 17685832
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation.
    Fernández-Delgado M; Cernadas E; Barro S; Ribeiro J; Neves J
    Neural Netw; 2014 Feb; 50():60-71. PubMed ID: 24287336
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identifying predictive features in drug response using machine learning: opportunities and challenges.
    Vidyasagar M
    Annu Rev Pharmacol Toxicol; 2015; 55():15-34. PubMed ID: 25423479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.