These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11765975)

  • 1. Thermoregulatory responses of two mouse Mus musculus strains selectively bred for high and low food intake.
    Selman C; Korhonen TK; Bünger L; Hill WG; Speakman JR
    J Comp Physiol B; 2001 Nov; 171(8):661-8. PubMed ID: 11765975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake.
    Selman C; Lumsden S; Bünger L; Hill WG; Speakman JR
    J Exp Biol; 2001 Feb; 204(Pt 4):777-84. PubMed ID: 11171360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of mouse lines divergently selected for heat loss when exposed to different environmental temperatures. II. Feed intake, growth, fatness, and body organs.
    Kgwatalala PM; Nielsen MK
    J Anim Sci; 2004 Oct; 82(10):2884-91. PubMed ID: 15484938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.
    Mousel MR; Stroup WW; Nielsen MK
    J Anim Sci; 2001 Apr; 79(4):861-8. PubMed ID: 11325190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in food intake in response to alterations in the ambient temperature: modifications by previous thermal and nutritional experience.
    Macari M; Dauncey MJ; Ingram DL
    Pflugers Arch; 1983 Mar; 396(3):231-7. PubMed ID: 6844126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limits to sustained energy intake. VIII. Resting metabolic rate and organ morphology of laboratory mice lactating at thermoneutrality.
    Król E; Johnson MS; Speakman JR
    J Exp Biol; 2003 Dec; 206(Pt 23):4283-91. PubMed ID: 14581598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and behavioral responses to high-fat feeding in mice selectively bred for high wheel-running activity.
    Vaanholt LM; Jonas I; Doornbos M; Schubert KA; Nyakas C; Garland T; Visser GH; van Dijk G
    Int J Obes (Lond); 2008 Oct; 32(10):1566-75. PubMed ID: 18725891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acutely decreased thermoregulatory energy expenditure or decreased activity energy expenditure both acutely reduce food intake in mice.
    Kaiyala KJ; Morton GJ; Thaler JP; Meek TH; Tylee T; Ogimoto K; Wisse BE
    PLoS One; 2012; 7(8):e41473. PubMed ID: 22936977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effects of fur on the thermal regulation of mice (Mus musculus)].
    Minakami K; Obara T; Yamauchi C
    Jikken Dobutsu; 1986 Jan; 35(1):101-5. PubMed ID: 3709670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meeting the energy demands of reproduction in female koalas, Phascolarctos cinereus: evidence for energetic compensation.
    Krockenberger A
    J Comp Physiol B; 2003 Aug; 173(6):531-40. PubMed ID: 12827418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heritable variation in reaction norms of metabolism and activity across temperatures in a wild-derived population of white-footed mice (Peromyscus leucopus).
    Kaseloo PA; Crowell MG; Heideman PD
    J Comp Physiol B; 2014 May; 184(4):525-34. PubMed ID: 24549715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity.
    Vaanholt LM; Garland T; Daan S; Visser GH
    J Comp Physiol B; 2007 Jan; 177(1):109-18. PubMed ID: 16932886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in mitochondrial efficiency between lines of mice divergently selected for heat loss.
    McDonald JM; Ramsey JJ; Miner JL; Nielsen MK
    J Anim Sci; 2009 Oct; 87(10):3105-13. PubMed ID: 19542504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic effects of altering the 24 h energy intake in man, using direct and indirect calorimetry.
    Dauncey MJ
    Br J Nutr; 1980 Mar; 43(2):257-69. PubMed ID: 7378336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest.
    Gaskill BN; Gordon CJ; Pajor EA; Lucas JR; Davis JK; Garner JP
    PLoS One; 2012; 7(3):e32799. PubMed ID: 22479340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart.
    Corp N; Gorman ML; Speakman JR
    J Comp Physiol B; 1997 Apr; 167(3):229-39. PubMed ID: 9151433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia.
    Marhold S; Nagel A
    J Comp Physiol B; 1995; 164(8):636-45. PubMed ID: 7738232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of environmental temperature and heat production due to food intake on abdominal temperature, shank skin temperature and respiration rate of broilers.
    Zhou WT; Yamamoto S
    Br Poult Sci; 1997 Mar; 38(1):107-14. PubMed ID: 9088622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive energetics in house mice, Mus musculus domesticus, from the island of Porto Santo (Madeira archipelago, North Atlantic).
    Mathias ML; Nunes AC; Marques CC; Sousa I; Ramalhinho MG; Auffray JC; Catalan J; Britton-Davidian J
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Apr; 137(4):703-9. PubMed ID: 15123178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise.
    Hiramatsu L; Garland T
    Physiol Behav; 2018 Oct; 194():1-8. PubMed ID: 29680707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.