BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11766810)

  • 1. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.
    Ouyan Y; Cho JS; Mansell RS
    Water Res; 2002 Jan; 36(1):33-40. PubMed ID: 11766810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.
    Saenton S; Illangasekare TH; Soga K; Saba TA
    J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.
    Zhang C; Werth CJ; Webb AG
    J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-ionic surfactant flushing of pentachlorophenol from NAPL-contaminated soil.
    Park SK; Bielefeldt AR
    Water Res; 2005 Apr; 39(7):1388-96. PubMed ID: 15862339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers.
    Zoller U; Reznik A
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):392-7. PubMed ID: 17120829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation.
    Babaei M; Copty NK
    J Contam Hydrol; 2019 Feb; 221():69-81. PubMed ID: 30691860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol.
    Ramsburg CA; Pennell KD
    Environ Sci Technol; 2002 May; 36(9):2082-7. PubMed ID: 12026997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells.
    Ramsburg CA; Pennell KD
    Environ Sci Technol; 2002 Jul; 36(14):3176-87. PubMed ID: 12141501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of surfactant formulation on nonequilibrium NAPL solubilization.
    Zhong L; Mayer AS; Pope GA
    J Contam Hydrol; 2003 Jan; 60(1-2):55-75. PubMed ID: 12498574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of wettability on the recovery of NAPLs from alluvium.
    Dwarakanath V; Jackson RE; Pope GA
    Environ Sci Technol; 2002 Jan; 36(2):227-31. PubMed ID: 11827056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field.
    Saba T; Illangasekare TH; Ewing J
    J Contam Hydrol; 2001 Sep; 51(1-2):63-82. PubMed ID: 11530927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a surfactant-stabilized emulsion to deliver 1-butanol for density-modified displacement of trichloroethene.
    Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF
    Environ Sci Technol; 2003 Sep; 37(18):4246-53. PubMed ID: 14524460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of in situ NAPL-contaminated aquifer bioremediation by biodegradable nutrient-surfactant mix.
    Zoller U; Rubin H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 Sep; 36(8):1451-71. PubMed ID: 11597107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations.
    Ramezanzadeh M; Aminnaji M; Rezanezhad F; Ghazanfari MH; Babaei M
    Chemosphere; 2022 Feb; 289():133177. PubMed ID: 34890610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones.
    Jayanti S; Britton LN; Dwarakanath V; Pope GA
    Environ Sci Technol; 2002 Dec; 36(24):5491-7. PubMed ID: 12521180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone.
    Petri BG; Fučík R; Illangasekare TH; Smits KM; Christ JA; Sakaki T; Sauck CC
    Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.
    Javanbakht G; Goual L
    J Contam Hydrol; 2016; 185-186():61-73. PubMed ID: 26826983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.