BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11767113)

  • 1. Mevalonate pyrophosphate decarboxylase in stroke-prone spontaneously hypertensive rat is reduced from the age of two weeks.
    Michihara A; Sawamura M; Yamori Y; Akasaki K; Tsuji H
    Biol Pharm Bull; 2001 Dec; 24(12):1417-9. PubMed ID: 11767113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower mevalonate pyrophosphate decarboxylase activity is caused by the reduced amount of enzyme in stroke-prone spontaneously hypertensive rat.
    Michihara A; Sawamura M; Nara Y; Ikeda K; Yamori Y
    J Biochem; 1998 Jul; 124(1):40-4. PubMed ID: 9644243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of subcellular distribution of mevalonate pyrophosphate decarboxylase between stroke-prone spontaneously hypertensive rat and Wistar Kyoto rat.
    Michihara A; Sawamura M; Yamori Y; Akasaki K; Tsuji H
    Biol Pharm Bull; 2002 Jun; 25(6):734-7. PubMed ID: 12081138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of biochemical properties and protein level of mevalonate pyrophosphate decarboxylase between stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats].
    Michihara A
    Yakugaku Zasshi; 2004 Oct; 124(10):683-92. PubMed ID: 15467276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of microRNA214 and transcriptional regulation in reductions in mevalonate pyrophosphate decarboxylase mRNA levels in stroke-prone spontaneously hypertensive rat livers.
    Michihara A; Ide N; Mizutani Y; Okamoto M; Uchida M; Matsuoka H; Akasaki K
    Biosci Biotechnol Biochem; 2015; 79(11):1759-70. PubMed ID: 26158200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liver mevalonate 5-pyrophosphate decarboxylase is responsible for reduced serum cholesterol in stroke-prone spontaneously hypertensive rat.
    Sawamura M; Nara Y; Yamori Y
    J Biol Chem; 1992 Mar; 267(9):6051-5. PubMed ID: 1556116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stroke-prone spontaneously hypertensive rats have reduced hydroxysteroid 17-β dehydrogenase 7 levels for low cholesterol biosynthesis.
    Matsuoka H; Uchino Y; Choshi M; Nakamura T; Michihara A
    Clin Exp Pharmacol Physiol; 2020 Feb; 47(2):255-262. PubMed ID: 31587341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat.
    McGill JK; Gallagher L; Carswell HV; Irving EA; Dominiczak AF; Macrae IM
    Stroke; 2005 Jan; 36(1):135-41. PubMed ID: 15569870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of pressure-activated channel in intact vascular endothelium of stroke-prone spontaneously hypertensive rats.
    Köhler R; Grundig A; Brakemeier S; Rothermund L; Distler A; Kreutz R; Hoyer J
    Am J Hypertens; 2001 Jul; 14(7 Pt 1):716-21. PubMed ID: 11465659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of glucose transporter-1 and aquaporin-4 in the cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood-brain barrier function.
    Ishida H; Takemori K; Dote K; Ito H
    Am J Hypertens; 2006 Jan; 19(1):33-9. PubMed ID: 16461188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle of stroke-prone spontaneously hypertensive rats exhibits reduced insulin-stimulated glucose transport and elevated levels of caveolin and flotillin.
    James DJ; Cairns F; Salt IP; Murphy GJ; Dominiczak AF; Connell JM; Gould GW
    Diabetes; 2001 Sep; 50(9):2148-56. PubMed ID: 11522683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective trophoblast invasion underlies fetal growth restriction and preeclampsia-like symptoms in the stroke-prone spontaneously hypertensive rat.
    Barrientos G; Pussetto M; Rose M; Staff AC; Blois SM; Toblli JE
    Mol Hum Reprod; 2017 Jul; 23(7):509-519. PubMed ID: 28402512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood-brain barrier endothelial cells.
    Lippoldt A; Kniesel U; Liebner S; Kalbacher H; Kirsch T; Wolburg H; Haller H
    Brain Res; 2000 Dec; 885(2):251-61. PubMed ID: 11102579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrial natriuretic polypeptide (ANP) in the development of spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP).
    Kato J; Kida O; Nakamura S; Sasaki A; Kodama K; Tanaka K
    Biochem Biophys Res Commun; 1987 Feb; 143(1):316-22. PubMed ID: 2950861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure.
    Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP
    J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat.
    Shi H; Nelson JW; Phillips S; Petrosino JF; Bryan RM; Durgan DJ
    Sci Rep; 2022 May; 12(1):8534. PubMed ID: 35595870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Difference in subcellular distribution between 45- and 37-kDa mevalonate pyrophosphate decarboxylase in rat liver.
    Michihara A; Sawamura M; Yamori Y; Akasaki K; Tsuji H
    Biol Pharm Bull; 2001 Dec; 24(12):1347-50. PubMed ID: 11767099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intranephron PGE2 production in stroke-prone spontaneously hypertensive rats.
    Takemoto F; Miyanoshita A; Shimamura K; Sunano S; Endou H
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H987-93. PubMed ID: 2109944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the brain.
    Yoshida M; Watanabe Y; Yamanishi K; Yamashita A; Yamamoto H; Okuzaki D; Shimada K; Nojima H; Yasunaga T; Okamura H; Matsunaga H; Yamanishi H
    Int J Mol Med; 2014 Apr; 33(4):887-96. PubMed ID: 24452243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin converting activity assessed in vivo is increased in hereditary hypertensive rats.
    Krieger EM; Yamori Y; Lovenberg WM
    Braz J Med Biol Res; 1992; 25(12):1215-22. PubMed ID: 1341916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.