BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11767947)

  • 61. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus.
    Potempa J; Dubin A; Korzus G; Travis J
    J Biol Chem; 1988 Feb; 263(6):2664-7. PubMed ID: 3422637
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC.
    Nickerson N; Ip J; Passos DT; McGavin MJ
    Mol Microbiol; 2010 Jan; 75(1):161-77. PubMed ID: 19943908
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Purification and characterisation of elastase from Staphylococcus epidermidis.
    Sloot N; Thomas M; Marre R; Gatermann S
    J Med Microbiol; 1992 Sep; 37(3):201-5. PubMed ID: 1518036
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cloning, expression and purification of extracellular serine protease Esp, a biofilm-degrading enzyme, from Staphylococcus epidermidis.
    Sugimoto S; Iwase T; Sato F; Tajima A; Shinji H; Mizunoe Y
    J Appl Microbiol; 2011 Dec; 111(6):1406-15. PubMed ID: 21974778
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide.
    Geissler S; Götz F; Kupke T
    J Bacteriol; 1996 Jan; 178(1):284-8. PubMed ID: 8550430
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural insights into the role of the N-terminus in the activation and function of extracellular serine protease from Staphylococcus epidermidis.
    Manne K; Narayana SVL
    Acta Crystallogr D Struct Biol; 2020 Jan; 76(Pt 1):28-40. PubMed ID: 31909741
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inhibition of Staphylococcus aureus cysteine proteases by human serpin potentially limits staphylococcal virulence.
    Kantyka T; Plaza K; Koziel J; Florczyk D; Stennicke HR; Thogersen IB; Enghild JJ; Silverman GA; Pak SC; Potempa J
    Biol Chem; 2011 May; 392(5):483-9. PubMed ID: 21476872
    [TBL] [Abstract][Full Text] [Related]  

  • 68. α1-Antichymotrypsin inactivates staphylococcal cysteine protease in cross-class inhibition.
    Wladyka B; Kozik AJ; Bukowski M; Rojowska A; Kantyka T; Dubin G; Dubin A
    Biochimie; 2011 May; 93(5):948-53. PubMed ID: 21296644
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Staphylococcal proteases aid in evasion of the human complement system.
    Jusko M; Potempa J; Kantyka T; Bielecka E; Miller HK; Kalinska M; Dubin G; Garred P; Shaw LN; Blom AM
    J Innate Immun; 2014; 6(1):31-46. PubMed ID: 23838186
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis.
    Chamberlain NR; Brueggemann SA
    J Med Microbiol; 1997 Aug; 46(8):693-7. PubMed ID: 9511818
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Degradation of fibrinogen and collagen by staphopains, cysteine proteases released from Staphylococcus aureus.
    Ohbayashi T; Irie A; Murakami Y; Nowak M; Potempa J; Nishimura Y; Shinohara M; Imamura T
    Microbiology (Reading); 2011 Mar; 157(Pt 3):786-792. PubMed ID: 21081759
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Extracellular proteolytic enzymes of filamentous fungi.
    Pavlukova EB; Belozersky MA; Dunaevsky YE
    Biochemistry (Mosc); 1998 Aug; 63(8):899-928. PubMed ID: 9767183
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aureolysin of Staphylococcus warneri M accelerates its proteolytic cascade, and participates in biofilm formation.
    Yokoi KJ; Kuzuwa S; Iwasaki S; Yamakawa A; Taketo A; Kodaira K
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1238-42. PubMed ID: 27008278
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification and partial characterisation of an extracellular activator of fatty acid modifying enzyme (FAME) expression in Staphylococcus epidermidis.
    Chamberlain NR
    J Med Microbiol; 1999 Mar; 48(3):245-252. PubMed ID: 10334591
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proteolytic processing of the arterivirus replicase.
    Snijder E; Wassenaar AL; Den Boon JA; Spaan WJ
    Adv Exp Med Biol; 1995; 380():443-51. PubMed ID: 8830522
    [No Abstract]   [Full Text] [Related]  

  • 76. Structural elucidation of the Cys-His-Glu-Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen Staphylococcus saprophyticus.
    Rossi P; Aramini JM; Xiao R; Chen CX; Nwosu C; Owens LA; Maglaqui M; Nair R; Fischer M; Acton TB; Honig B; Rost B; Montelione GT
    Proteins; 2009 Feb; 74(2):515-9. PubMed ID: 18951393
    [No Abstract]   [Full Text] [Related]  

  • 77. Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis.
    McKevitt AI; Bjornson GL; Mauracher CA; Scheifele DW
    Infect Immun; 1990 May; 58(5):1473-5. PubMed ID: 2323825
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cystatins as regulators of intracellular proteolysis.
    Turk V
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():292-7. PubMed ID: 1297760
    [No Abstract]   [Full Text] [Related]  

  • 79. Stereospecific hydroxylation of (+)-cedrol by using human skin microbial flora Staphylococcus epidermidis.
    Miyazawa M; Itsuzaki Y; Ishikawa K; Ishisaka K
    Nat Prod Res; 2003 Oct; 17(5):313-7. PubMed ID: 14526908
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lack of pleiotropic compensation in extracellular protein production by hypoproducing variants of Staphylococcus simulans biovar staphylolyticus.
    Robinson JM; Heath HE; Sloan GL
    J Gen Microbiol; 1987 Feb; 133(2):253-7. PubMed ID: 3309147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.