These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1176870)
21. Factors determining decussation at the optic chiasma by developing retinotectal fibres in Xenopus. Beazley LD Exp Brain Res; 1975 Nov; 23(5):491-504. PubMed ID: 1204693 [TBL] [Abstract][Full Text] [Related]
22. Does timing of axon outgrowth influence initial retinotectal topography in Xenopus? Holt CE J Neurosci; 1984 Apr; 4(4):1130-52. PubMed ID: 6325604 [TBL] [Abstract][Full Text] [Related]
23. Stable programming for map orientation in fused eye fragments in Xenopus. Straznicky C; Gaze RM J Embryol Exp Morphol; 1980 Feb; 55():123-42. PubMed ID: 7373193 [TBL] [Abstract][Full Text] [Related]
24. Specificity and retinotectal projections of quarter-eye fragments in Xenopus laevis. Brändle K; Degen N Acta Biol Hung; 1988; 39(2-3):191-5. PubMed ID: 3077005 [TBL] [Abstract][Full Text] [Related]
25. Regeneration of an abnormal ipsilateral visuotectal projection in Xenopus is delayed by the presence of optic fibres from the other eye. Straznicky C; Tay D; Glastonbury J J Embryol Exp Morphol; 1980 Jun; 57():129-41. PubMed ID: 7430926 [TBL] [Abstract][Full Text] [Related]
26. The development of the retinotectal projections from compound eyes in Xenopus. Straznicky C; Gaze RM; Keating MJ J Embryol Exp Morphol; 1981 Apr; 62():13-35. PubMed ID: 7276807 [TBL] [Abstract][Full Text] [Related]
27. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis. Thanos S; Bonhoeffer F J Comp Neurol; 1984 Apr; 224(3):407-14. PubMed ID: 6715587 [TBL] [Abstract][Full Text] [Related]
28. Factors involved in the development of ipsilateral retinothalamic projections in Xenopus laevis. Kennard C J Embryol Exp Morphol; 1981 Oct; 65():199-217. PubMed ID: 7334300 [TBL] [Abstract][Full Text] [Related]
29. Visuotectal projections following temporary transplantation of embryonic eyes to the body in Xenopus laevis. Munro NS; Beazley LD J Embryol Exp Morphol; 1982 Oct; 71():97-108. PubMed ID: 7153700 [TBL] [Abstract][Full Text] [Related]
30. The effects of the fibre environment on the paths taken by regenerating optic nerve fibres in Xenopus. Taylor JS; Gaze RM J Embryol Exp Morphol; 1985 Oct; 89():383-401. PubMed ID: 4093753 [TBL] [Abstract][Full Text] [Related]
31. Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation. Hirsch N; Harris WA Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):960-9. PubMed ID: 9112992 [TBL] [Abstract][Full Text] [Related]
32. Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus. Straznicky C; Gaze RM; Horder TJ J Embryol Exp Morphol; 1979 Apr; 50():253-67. PubMed ID: 458360 [TBL] [Abstract][Full Text] [Related]
33. The retinotectal projections from surgically rounded-up half-eyes in Xenopus. Straznicky C; Gaze RM; Keating MJ J Embryol Exp Morphol; 1980 Aug; 58():79-91. PubMed ID: 7441161 [TBL] [Abstract][Full Text] [Related]
34. The retinotectal projections after uncrossing the optic chiasma in Xenopus with one compound eye. Straznicky K; Gaze RM; Keating MJ J Embryol Exp Morphol; 1971 Dec; 26(3):523-42. PubMed ID: 5146318 [No Abstract] [Full Text] [Related]
35. Ocular migration and the metamorphic and postmetamorphic maturation of the retinotectal system in Xenopus laevis: an autoradiographic and morphometric study. Grant S; Keating MJ J Embryol Exp Morphol; 1986 Mar; 92():43-69. PubMed ID: 3723067 [TBL] [Abstract][Full Text] [Related]
36. [Effects of unilateral or bilateral ablation of the optic vesicle on the superficial tectum of the chicken (Gallus domesticus)]. Raffin JP Acta Embryol Exp (Palermo); 1972; 1():45-63. PubMed ID: 5070622 [No Abstract] [Full Text] [Related]
37. Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin. Stone KE; Sakaguchi DS Dev Biol; 1996 Nov; 180(1):297-310. PubMed ID: 8948592 [TBL] [Abstract][Full Text] [Related]
38. A physiological measure of shifting connections in the Rana pipiens retinotectal system. Fraser SE; Hunt RK J Embryol Exp Morphol; 1986 Jun; 94():149-61. PubMed ID: 3489803 [TBL] [Abstract][Full Text] [Related]
39. Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo. Thanos S; Bonhoeffer F J Comp Neurol; 1983 Oct; 219(4):420-30. PubMed ID: 6643714 [TBL] [Abstract][Full Text] [Related]
40. Control of the development of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine: results and speculation. Hoskins SG J Neurobiol; 1986 May; 17(3):203-29. PubMed ID: 3519864 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]