BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11768730)

  • 1. Nitric oxide buffers renal medullary vasoconstriction induced by prostaglandins synthesis blockade.
    Nakanishi K; Chinen A; Saito Y; Hamada K; Hara N; Nagai Y
    Hypertens Res; 2001 Nov; 24(6):699-704. PubMed ID: 11768730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nitric oxide and prostaglandins in the long-term control of renal function.
    González JD; Llinás MT; Nava E; Ghiadoni L; Salazar FJ
    Hypertension; 1998 Jul; 32(1):33-8. PubMed ID: 9674634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow.
    Gomez SI; Strick DM; Romero JC
    Braz J Med Biol Res; 2008 Feb; 41(2):170-5. PubMed ID: 18297197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of cyclooxygenase-2-derived metabolites and nitric oxide in regulating renal function.
    Llinás MT; Rodríguez F; Moreno C; Salazar FJ
    Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1641-6. PubMed ID: 11049846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha(2)-adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction.
    Zou AP; Cowley AW
    Am J Physiol Regul Integr Comp Physiol; 2000 Sep; 279(3):R769-77. PubMed ID: 10956233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal changes induced by nitric oxide and prostaglandin synthesis reduction: effects of trandolapril and verapamil.
    Llinás MT; González JD; Rodríguez F; Nava E; Taddei S; Salazar FJ
    Hypertension; 1998 Feb; 31(2):657-64. PubMed ID: 9461237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of angiotensin II in the renal effects induced by nitric oxide and prostaglandin synthesis inhibition.
    Llinás MT; González JD; Nava E; Salazar FJ
    J Am Soc Nephrol; 1997 Apr; 8(4):543-50. PubMed ID: 10495783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic inhibition of nitric oxide and prostaglandins in volume-induced natriuresis and hypertension.
    Krier JD; Romero JC
    Am J Physiol; 1998 Jan; 274(1):R175-80. PubMed ID: 9458915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction.
    Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J
    Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-sensitive hypertension in conscious rats induced by chronic nitric oxide blockade.
    Nakanishi K; Hara N; Nagai Y
    Am J Hypertens; 2002 Feb; 15(2 Pt 1):150-6. PubMed ID: 11863250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coronary vasoconstriction produced by vasopressin in anesthetized goats. Role of vasopressin V1 and V2 receptors and nitric oxide.
    Fernández N; García JL; García-Villalón AL; Monge L; Gómez B; Diéguez G
    Eur J Pharmacol; 1998 Jan; 342(2-3):225-33. PubMed ID: 9548390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of NO and cytochrome P-450-derived eicosanoids in ET-1-induced changes in intrarenal hemodynamics in rats.
    Hercule HC; Oyekan AO
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2132-41. PubMed ID: 11080078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of verapamil on the renal actions induced by nitric oxide and prostaglandin synthesis inhibition.
    Llinás MT; González JD; Salazar FJ
    Am J Hypertens; 1996 Oct; 9(10 Pt 1):973-81. PubMed ID: 8896649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion.
    Moreno C; Llinás MT; Rodriguez F; Moreno JM; Salazar FJ
    J Physiol Biochem; 2016 Mar; 72(1):1-8. PubMed ID: 26611113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.