BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11768799)

  • 1. Influence of room geometry and ventilation rate on airflow and aerosol dispersion: implications for worker protection.
    Whicker JJ; Wasiolek PT; Tavani RA
    Health Phys; 2002 Jan; 82(1):52-63. PubMed ID: 11768799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurements of airflow inside a nuclear laboratory.
    Whicker JJ; Baker GD; Wasiolek PT
    Health Phys; 2000 Dec; 79(6):712-21. PubMed ID: 11089809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room airflow studies using sonic anemometry.
    Wasiolek PT; Whicker JJ; Gong H; Rodgers JC
    Indoor Air; 1999 Jun; 9(2):125-33. PubMed ID: 10390937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room.
    Thatiparti DS; Ghia U; Mead KR
    Sci Technol Built Environ; 2016; 23(2):355-366. PubMed ID: 28736744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of need for transport tubes when continuously monitoring for radioactive aerosols.
    Whicker JJ; Rodgers JC; Lopez RC
    Health Phys; 1999 Sep; 77(3):322-7. PubMed ID: 10456505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative method for optimized placement of continuous air monitors.
    Whicker JJ; Rodgers JC; Moxley JS
    Health Phys; 2003 Nov; 85(5):599-609. PubMed ID: 14571993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Effectiveness of Ceiling-Ventilated Mock Airborne Infection Isolation Room in Preventing Hospital-Acquired Influenza Transmission to Health Care Workers.
    Thatiparti DS; Ghia U; Mead KR
    ASHRAE Trans; 2016; 122(2):35-46. PubMed ID: 28529344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of an ambulance ventilation system in reducing EMS worker exposure to airborne particles from a patient cough aerosol simulator.
    Lindsley WG; Blachere FM; McClelland TL; Neu DT; Mnatsakanova A; Martin SB; Mead KR; Noti JD
    J Occup Environ Hyg; 2019 Dec; 16(12):804-816. PubMed ID: 31638865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between tracer gas and aerosol particles distribution indoors: The impact of ventilation rate, interaction of airflows, and presence of objects.
    Bivolarova M; Ondráček J; Melikov A; Ždímal V
    Indoor Air; 2017 Nov; 27(6):1201-1212. PubMed ID: 28378912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of surgically produced aerosols in an operating room.
    Buchanan CR; Dunn-Rankin D
    Am Ind Hyg Assoc J; 1998 Jun; 59(6):393-402. PubMed ID: 9670469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of continuous air monitor placement in a plutonium facility.
    Whicker JJ; Rodgers JC; Fairchild CI; Scripsick RC; Lopez RC
    Health Phys; 1997 May; 72(5):734-43. PubMed ID: 9106715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of airborne particles within a room.
    Richmond-Bryant J; Eisner AD; Brixey LA; Wiener RW
    Indoor Air; 2006 Feb; 16(1):48-55. PubMed ID: 16420497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the effect of room size and general ventilation on the relationship between near- and far-field air concentrations.
    Cherrie JW; Maccalman L; Fransman W; Tielemans E; Tischer M; Van Tongeren M
    Ann Occup Hyg; 2011 Nov; 55(9):1006-15. PubMed ID: 22021819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of air inlet velocity in simulating the dispersion of indoor contaminants via computational fluid dynamics.
    Lee E; Feigley CE; Khan J
    Ann Occup Hyg; 2002 Nov; 46(8):701-12. PubMed ID: 12406864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal.
    Mousavi ES; Grosskopf KR
    Ann Occup Hyg; 2015 Nov; 59(9):1190-9. PubMed ID: 26187326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach.
    Chao CY; Wan MP
    Indoor Air; 2006 Aug; 16(4):296-312. PubMed ID: 16842610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of air purifiers and curtains on aerosol dispersion and removal in multi-patient hospital rooms.
    Rogak SN; Rysanek A; Lee JM; Dhulipala SV; Zimmerman N; Wright M; Weimer M
    Indoor Air; 2022 Oct; 32(10):e13110. PubMed ID: 36305060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mechanical ventilation and portable air cleaner on aerosol removal from dental treatment rooms.
    Ren YF; Huang Q; Marzouk T; Richard R; Pembroke K; Martone P; Venner T; Malmstrom H; Eliav E
    J Dent; 2021 Feb; 105():103576. PubMed ID: 33388387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics.
    Chen C; Zhao B; Cui W; Dong L; An N; Ouyang X
    J R Soc Interface; 2010 Jul; 7(48):1105-18. PubMed ID: 20031985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.