These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11768799)

  • 41. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.
    Sabty-Daily RA; Hinds WC; Froines JR
    Ann Occup Hyg; 2005 Jan; 49(1):33-45. PubMed ID: 15596421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A constant flow filter air sampler for workplace environments.
    Parulian A; Rodgers JC; McFarland AR
    Health Phys; 1996 Dec; 71(6):870-8. PubMed ID: 8919070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of location, classroom orientation, and air change rate on potential aerosol exposure: an experimental and computational study.
    Dacunto P; Ng A; Moser D; Tovkach A; Scanlon S; Benson M
    Environ Sci Process Impacts; 2022 Apr; 24(4):557-566. PubMed ID: 35244126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of a head-only aerosol exposure system for nonhuman primates.
    Dabisch PA; Kline J; Lewis C; Yeager J; Pitt ML
    Inhal Toxicol; 2010 Feb; 22(3):224-33. PubMed ID: 20063997
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation.
    Cheng Y; Lin Z
    Indoor Air; 2015 Dec; 25(6):662-71. PubMed ID: 25626596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of aerosol transmission risk during home quarantine under different operating scenarios: A pilot study.
    Cheung T; Li J; Goh J; Sekhar C; Cheong D; Tham KW
    Build Environ; 2022 Nov; 225():109640. PubMed ID: 36210963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical and experimental study of aerosol dispersion in the Do728 aircraft cabin.
    Schmeling D; Shishkin A; Schiepel D; Wagner C
    CEAS Aeronaut J; 2023; 14(2):509-526. PubMed ID: 36819984
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical study on the dispersion of airborne contaminants from an isolation room in the case of door opening.
    Tung YC; Shih YC; Hu SC
    Appl Therm Eng; 2009 Jun; 29(8):1544-1551. PubMed ID: 32288590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental investigation of the concept of a 'breathing zone' using a mannequin exposed to a point source of inertial/sedimenting particles emitted with momentum.
    Lidén G; Waher J
    Ann Occup Hyg; 2010 Jan; 54(1):100-16. PubMed ID: 19955328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of room ventilation settings on aerosol clearance and distribution.
    Sperna Weiland NH; Traversari RAAL; Sinnige JS; van Someren Gréve F; Timmermans A; Spijkerman IJB; Ganzevoort W; Hollmann MW
    Br J Anaesth; 2021 Jan; 126(1):e49-e52. PubMed ID: 33190858
    [No Abstract]   [Full Text] [Related]  

  • 52. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.
    Tsai SJ; Huang RF; Ellenbecker MJ
    Ann Occup Hyg; 2010 Jan; 54(1):78-87. PubMed ID: 19933309
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental and numerical study of heavy gas dispersion in a ventilated room.
    Ricciardi L; Prévost C; Bouilloux L; Sestier-Carlin R
    J Hazard Mater; 2008 Apr; 152(2):493-505. PubMed ID: 17804157
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Probabilistic model evaluation of continuous air monitor response for meeting radiation protection goals.
    Whicker JJ; Justus AL
    Health Phys; 2009 Sep; 97(3):228-41. PubMed ID: 19667806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting worker exposure--the effect of ventilation velocity, free-stream turbulence and thermal condition.
    Li J; Yavuz I; Celik I; Guffey S
    J Occup Environ Hyg; 2007 Nov; 4(11):864-74. PubMed ID: 17917950
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.
    Alsved M; Civilis A; Ekolind P; Tammelin A; Andersson AE; Jakobsson J; Svensson T; Ramstorp M; Sadrizadeh S; Larsson PA; Bohgard M; Šantl-Temkiv T; Löndahl J
    J Hosp Infect; 2018 Feb; 98(2):181-190. PubMed ID: 29074054
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying strategies to minimize aerosol dispersion in dental clinics.
    Dey S; Tunio M; Boryc LC; Hodgson BD; Garcia GJM
    Exp Comput Multiph Flow; 2023; 5(3):290-303. PubMed ID: 37305074
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of contaminants released from room surfaces by displacement and mixing ventilation: modeling and validation.
    He G; Yang X; Srebric J
    Indoor Air; 2005 Oct; 15(5):367-80. PubMed ID: 16108910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different ventilation airflow patterns.
    Wan MP; Chao CY
    J Biomech Eng; 2007 Jun; 129(3):341-53. PubMed ID: 17536901
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial distribution of bioaerosols and evaluation of four ventilation method on controlling their diffusion in a typical enhanced biosafety level 2 laboratory.
    Liu Z; Wang Y; Jiang C; He J; Rong R; Li S; Liang Z
    J Hazard Mater; 2024 Aug; 475():134942. PubMed ID: 38889462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.