These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1176900)

  • 1. A preliminary investigation into the roles played by the rectal gland and kidneys in the osmoregulation of the striped dogfish Poroderma africanum.
    Haywood GP
    J Exp Zool; 1975 Aug; 193(2):167-75. PubMed ID: 1176900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmoregulation in elephant fish Callorhinchus milii (Holocephali), with special reference to the rectal gland.
    Hyodo S; Bell JD; Healy JM; Kaneko T; Hasegawa S; Takei Y; Donald JA; Toop T
    J Exp Biol; 2007 Apr; 210(Pt 8):1303-10. PubMed ID: 17401114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchs.
    Stoff JS; Silva P; Field M; Forrest J; Stevens A; Epstein FH
    J Exp Zool; 1977 Mar; 199(3):443-8. PubMed ID: 191564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.
    Pillans RD; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):363-71. PubMed ID: 15313492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pardaxin increases solute permeability of gills and rectal gland in the dogfish shark (Squalus acanthias).
    Primor N; Zadunaisky JA; Murdaugh HV; Boyer JL; Forrest JN
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(2):483-90. PubMed ID: 6149101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?
    Wood CM; Kajimura M; Mommsen TP; Walsh PJ
    Physiol Biochem Zool; 2008; 81(3):278-87. PubMed ID: 18419554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed North Pacific spiny dogfish (Squalus suckleyi).
    Deck CA; Bockus AB; Seibel BA; Walsh PJ
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Mar; 193():29-35. PubMed ID: 26686463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic strength and the polyvalent cation receptor of shark rectal gland and artery.
    Fellner SK; Parker L
    J Exp Zool A Comp Exp Biol; 2004 Mar; 301(3):235-9. PubMed ID: 14981782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias).
    Wood CM; Munger RS; Thompson J; Shuttleworth TJ
    Respir Physiol Neurobiol; 2007 May; 156(2):220-8. PubMed ID: 17049933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of NaCl secretion in the rectal gland of the dogfish Squalus acanthias.
    Greger R; Gögelein H; Schlatter E
    Comp Biochem Physiol A Comp Physiol; 1988; 90(4):733-7. PubMed ID: 2902981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintaining osmotic balance with an aglomerular kidney.
    McDonald MD; Grosell M
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Apr; 143(4):447-58. PubMed ID: 16483812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of tight junctions during Cl secretion in the perfused rectal gland of the dogfish shark.
    Forrest JN; Boyer JL; Ardito TA; Murdaugh HV; Wade JB
    Am J Physiol; 1982 May; 242(5):C388-92. PubMed ID: 7081428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary role of volume expansion in stimulation of rectal gland function.
    Solomon R; Taylor M; Sheth S; Silva P; Epstein FH
    Am J Physiol; 1985 May; 248(5 Pt 2):R638-40. PubMed ID: 3993820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea transport in the dogfish kidney.
    Hays RM; Levine SD; Myers JD; Heinemann HO; Kaplan MA; Franki N; Berliner H
    J Exp Zool; 1977 Mar; 199(3):309-16. PubMed ID: 850113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow in the rectal gland of Squalus acanthias.
    Kent B; Olson KR
    Am J Physiol; 1982 Sep; 243(3):R296-303. PubMed ID: 7114289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and control of hyperosmotic NaCl-rich secretion by the rectal gland of Squalus acanthias.
    Epstein FH; Stoff JS; Silva P
    J Exp Biol; 1983 Sep; 106():25-41. PubMed ID: 6140295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of renal effects of DOCA, ACTH, spironolactone, and angiotensin II in Squalus acanthias.
    Churchill PC; Malvin RL; Churchill MC
    J Exp Zool; 1985 Apr; 234(1):17-22. PubMed ID: 2985732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dietary protein restriction on the secretory dynamics of 1 alpha-hydroxycorticosterone and urea in the dogfish, Scyliorhinus canicula: a possible role for 1 alpha-hydroxycorticosterone in sodium retention.
    Armour KJ; O'Toole LB; Hazon N
    J Endocrinol; 1993 Aug; 138(2):275-82. PubMed ID: 8228736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloacal and salt-gland ion excretion in the seagull, Larus glaucescens, acclimated to increasing concentrations of sea water.
    Hughes MR
    Comp Biochem Physiol; 1970 Jan; 32(2):315-25. PubMed ID: 5417461
    [No Abstract]   [Full Text] [Related]  

  • 20. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.
    Ratner MA; Decker SE; Aller SG; Weber G; Forrest JN
    J Exp Zool A Comp Exp Biol; 2006 Mar; 305(3):259-67. PubMed ID: 16432888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.