BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1176900)

  • 1. A preliminary investigation into the roles played by the rectal gland and kidneys in the osmoregulation of the striped dogfish Poroderma africanum.
    Haywood GP
    J Exp Zool; 1975 Aug; 193(2):167-75. PubMed ID: 1176900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmoregulation in elephant fish Callorhinchus milii (Holocephali), with special reference to the rectal gland.
    Hyodo S; Bell JD; Healy JM; Kaneko T; Hasegawa S; Takei Y; Donald JA; Toop T
    J Exp Biol; 2007 Apr; 210(Pt 8):1303-10. PubMed ID: 17401114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchs.
    Stoff JS; Silva P; Field M; Forrest J; Stevens A; Epstein FH
    J Exp Zool; 1977 Mar; 199(3):443-8. PubMed ID: 191564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient.
    Pillans RD; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):363-71. PubMed ID: 15313492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pardaxin increases solute permeability of gills and rectal gland in the dogfish shark (Squalus acanthias).
    Primor N; Zadunaisky JA; Murdaugh HV; Boyer JL; Forrest JN
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(2):483-90. PubMed ID: 6149101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?
    Wood CM; Kajimura M; Mommsen TP; Walsh PJ
    Physiol Biochem Zool; 2008; 81(3):278-87. PubMed ID: 18419554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed North Pacific spiny dogfish (Squalus suckleyi).
    Deck CA; Bockus AB; Seibel BA; Walsh PJ
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Mar; 193():29-35. PubMed ID: 26686463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic strength and the polyvalent cation receptor of shark rectal gland and artery.
    Fellner SK; Parker L
    J Exp Zool A Comp Exp Biol; 2004 Mar; 301(3):235-9. PubMed ID: 14981782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias).
    Wood CM; Munger RS; Thompson J; Shuttleworth TJ
    Respir Physiol Neurobiol; 2007 May; 156(2):220-8. PubMed ID: 17049933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of NaCl secretion in the rectal gland of the dogfish Squalus acanthias.
    Greger R; Gögelein H; Schlatter E
    Comp Biochem Physiol A Comp Physiol; 1988; 90(4):733-7. PubMed ID: 2902981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintaining osmotic balance with an aglomerular kidney.
    McDonald MD; Grosell M
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Apr; 143(4):447-58. PubMed ID: 16483812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of tight junctions during Cl secretion in the perfused rectal gland of the dogfish shark.
    Forrest JN; Boyer JL; Ardito TA; Murdaugh HV; Wade JB
    Am J Physiol; 1982 May; 242(5):C388-92. PubMed ID: 7081428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary role of volume expansion in stimulation of rectal gland function.
    Solomon R; Taylor M; Sheth S; Silva P; Epstein FH
    Am J Physiol; 1985 May; 248(5 Pt 2):R638-40. PubMed ID: 3993820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urea transport in the dogfish kidney.
    Hays RM; Levine SD; Myers JD; Heinemann HO; Kaplan MA; Franki N; Berliner H
    J Exp Zool; 1977 Mar; 199(3):309-16. PubMed ID: 850113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow in the rectal gland of Squalus acanthias.
    Kent B; Olson KR
    Am J Physiol; 1982 Sep; 243(3):R296-303. PubMed ID: 7114289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and control of hyperosmotic NaCl-rich secretion by the rectal gland of Squalus acanthias.
    Epstein FH; Stoff JS; Silva P
    J Exp Biol; 1983 Sep; 106():25-41. PubMed ID: 6140295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of renal effects of DOCA, ACTH, spironolactone, and angiotensin II in Squalus acanthias.
    Churchill PC; Malvin RL; Churchill MC
    J Exp Zool; 1985 Apr; 234(1):17-22. PubMed ID: 2985732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dietary protein restriction on the secretory dynamics of 1 alpha-hydroxycorticosterone and urea in the dogfish, Scyliorhinus canicula: a possible role for 1 alpha-hydroxycorticosterone in sodium retention.
    Armour KJ; O'Toole LB; Hazon N
    J Endocrinol; 1993 Aug; 138(2):275-82. PubMed ID: 8228736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloacal and salt-gland ion excretion in the seagull, Larus glaucescens, acclimated to increasing concentrations of sea water.
    Hughes MR
    Comp Biochem Physiol; 1970 Jan; 32(2):315-25. PubMed ID: 5417461
    [No Abstract]   [Full Text] [Related]  

  • 20. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.
    Ratner MA; Decker SE; Aller SG; Weber G; Forrest JN
    J Exp Zool A Comp Exp Biol; 2006 Mar; 305(3):259-67. PubMed ID: 16432888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.