These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 1176904)
1. A reexamination of cleavage patterns in eutherian mammalian eggs: rotation of blastomere pairs during second cleavage in the rabbit. Gulyas BJ J Exp Zool; 1975 Aug; 193(2):235-48. PubMed ID: 1176904 [TBL] [Abstract][Full Text] [Related]
2. Establishment of embryonic axes in larvae of the starfish, Asterina pectinifera. Kominami T J Embryol Exp Morphol; 1983 Jun; 75():87-100. PubMed ID: 6886618 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage. Cooke J; Webber JA J Embryol Exp Morphol; 1985 Aug; 88():85-112. PubMed ID: 4078542 [TBL] [Abstract][Full Text] [Related]
4. Calyculin-A induces cleavage in a random plane in unfertilized sea urchin eggs. Goda M; Inoué S; Mabuchi I Biol Bull; 2009 Feb; 216(1):40-4. PubMed ID: 19218490 [TBL] [Abstract][Full Text] [Related]
5. The basis and significance of pre-patterning in mammals. Gardner RL; Davies TJ Philos Trans R Soc Lond B Biol Sci; 2003 Aug; 358(1436):1331-8; discussion 1338-9. PubMed ID: 14511479 [TBL] [Abstract][Full Text] [Related]
7. Cell behavior during early development in the South American annual fishes of the genus Cynolebias. Carter CA; Wourms JP J Morphol; 1991 Dec; 210(3):247-66. PubMed ID: 1791627 [TBL] [Abstract][Full Text] [Related]
8. Displacement of cleavage plane in the sea urchin egg by locally applied taxol. Hamaguchi Y Cell Motil Cytoskeleton; 1998; 40(3):211-9. PubMed ID: 9678665 [TBL] [Abstract][Full Text] [Related]
9. Unbiased contribution of the first two blastomeres to mouse blastocyst development. Alarcón VB; Marikawa Y Mol Reprod Dev; 2005 Nov; 72(3):354-61. PubMed ID: 16078274 [TBL] [Abstract][Full Text] [Related]
10. Effects of hydrostatic pressure on microtubule organization and cell cycle in gynogenetically activated eggs of olive flounder (Paralichthys olivaceus). Zhu XP; You F; Zhang PJ; Xu JH; Sun W Theriogenology; 2007 Oct; 68(6):873-81. PubMed ID: 17707899 [TBL] [Abstract][Full Text] [Related]
11. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis. Satoh K; Kominami T Dev Growth Differ; 2008 Oct; 50(8):675-87. PubMed ID: 18826473 [TBL] [Abstract][Full Text] [Related]
12. Analysis of cell lineage in two- and four-cell mouse embryos. Fujimori T; Kurotaki Y; Miyazaki J; Nabeshima Y Development; 2003 Nov; 130(21):5113-22. PubMed ID: 12944430 [TBL] [Abstract][Full Text] [Related]
13. Cleavage initiation activities of microtubules and in vitro reassembled tubulins of sperm flagella. Iwamatsu T; Miki-Noumura T; Ohta T J Exp Zool; 1976 Jan; 195(1):97-106. PubMed ID: 1255123 [TBL] [Abstract][Full Text] [Related]
14. Cathepsin L inhibitor I blocks mitotic chromosomes decondensation during cleavage cell cycles of sea urchin embryos. Morin V; Sanchez A; Quiñones K; Huidobro JG; Iribarren C; Bustos P; Puchi M; Genevière AM; Imschenetzky M J Cell Physiol; 2008 Sep; 216(3):790-5. PubMed ID: 18425772 [TBL] [Abstract][Full Text] [Related]
15. [Dyssymmetrical cytotomy and orientation of the spindles in early isolated blastomeres of gastropod molluscs]. Meshcheriakov VN Ontogenez; 1976; 7(6):558-65. PubMed ID: 1028007 [TBL] [Abstract][Full Text] [Related]
16. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis. Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995 [TBL] [Abstract][Full Text] [Related]
17. Relative changes in F-actin during the first cell cycle: evidence for two distinct pools of F-actin in the sea urchin egg. Heil-Chapdelaine RA; Otto JJ Cell Motil Cytoskeleton; 1996; 34(1):26-35. PubMed ID: 8860229 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis. Wong GK; Allen PG; Begg DA Cell Motil Cytoskeleton; 1997; 36(1):30-42. PubMed ID: 8986375 [TBL] [Abstract][Full Text] [Related]
19. The permeability to cytochalasin B of the new unpigmented surface in the first cleavage furrow of the newt's egg. Selman GG; Jacob J; Perry MM J Embryol Exp Morphol; 1976 Oct; 36(2):321-41. PubMed ID: 1033983 [TBL] [Abstract][Full Text] [Related]
20. Cell-cell interactions and the role of micromeres in the control of the mitotic pattern in sea urchin embryos. Andreuccetti P; Filosa S; Monroy A; Parisi E Prog Clin Biol Res; 1982; 85 Pt B():21-9. PubMed ID: 7122568 [No Abstract] [Full Text] [Related] [Next] [New Search]