BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 11769316)

  • 1. An analysis of relationships among plant community phenology and seasonal metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China.
    Chen X; Xu C; Tan Z
    Int J Biometeorol; 2001 Nov; 45(4):170-7. PubMed ID: 11769316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index.
    Ji Z; Pan Y; Zhu X; Wang J; Li Q
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Spatial and temporal variations of vegetation phenology and its response to urbanization in central Yunnan urban agglomeration, Southwest China].
    Ruan WJ; He YL; Huang LH
    Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3263-3270. PubMed ID: 38511365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment.
    Guay KC; Beck PS; Berner LT; Goetz SJ; Baccini A; Buermann W
    Glob Chang Biol; 2014 Oct; 20(10):3147-58. PubMed ID: 24890614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction and spatio-temporal analysis of phenological dates of winter wheat in north Henan Province of China from 2003 to 2018 based on MODIS NDVI time series.
    Gao Z
    PLoS One; 2024; 19(4):e0300486. PubMed ID: 38626154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using satellite-derived estimates of plant phenological rhythms to predict sage-grouse nesting chronology.
    Stoner DC; Messmer TA; Larsen RT; Frey SN; Kohl MT; Thacker ET; Dahlgren DK
    Ecol Evol; 2020 Oct; 10(20):11169-11182. PubMed ID: 33144957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poverty, health and satellite-derived vegetation indices: their inter-spatial relationship in West Africa.
    Sedda L; Tatem AJ; Morley DW; Atkinson PM; Wardrop NA; Pezzulo C; Sorichetta A; Kuleszo J; Rogers DJ
    Int Health; 2015 Mar; 7(2):99-106. PubMed ID: 25733559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greening of Svalbard.
    Karlsen SR; Elvebakk A; Stendardi L; Høgda KA; Macias-Fauria M
    Sci Total Environ; 2024 Oct; 945():174130. PubMed ID: 38909820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A satellite-derived dataset on vegetation phenology across Central Asia from 2001 to 2023.
    Ding C
    Data Brief; 2024 Jun; 54():110297. PubMed ID: 38962194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetation changes associated with a population irruption by Roosevelt elk.
    Starns HD; Weckerly FW; Ricca MA; Duarte A
    Ecol Evol; 2015 Jan; 5(1):109-20. PubMed ID: 25628868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of urban trees and total vegetation on asthma development in children.
    Duquesne L; Anassour Laouan Sidi E; Plante C; Liu Y; Zhao N; Lavigne É; Zinszer K; Sousa-Silva R; Fournier M; J Villeneuve P; Kaiser DJ; Smargiassi A
    Environ Epidemiol; 2023 Dec; 7(6):e280. PubMed ID: 38912389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Varying Light and Dew on Ground Cover Estimates from Active NDVI, RGB, and LiDAR.
    Deery DM; Smith DJ; Davy R; Jimenez-Berni JA; Rebetzke GJ; James RA
    Plant Phenomics; 2021; 2021():9842178. PubMed ID: 34250506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of MODIS surrogates for meteorological humidity data in east Africa.
    Lin S; Moore NJ; Messina JP; Wu J
    Int J Remote Sens; 2013; 34(13):4669-4679. PubMed ID: 23956475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the Effect of Xiluodu Reservoir on the Temperature of the Surrounding Mountains.
    Wang DC; Liu JY; Huang Y; Duan XW; Wang X; Zhang X; Sun ZC; Chen JH; Zhang W
    Geohealth; 2020 May; 4(5):e2019GH000242. PubMed ID: 32368709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maps, trends, and temperature sensitivities-phenological information from and for decreasing numbers of volunteer observers.
    Yuan Y; Härer S; Ottenheym T; Misra G; Lüpke A; Estrella N; Menzel A
    Int J Biometeorol; 2021 Aug; 65(8):1377-1390. PubMed ID: 33694098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements.
    Fontana F; Rixen C; Jonas T; Aberegg G; Wunderle S
    Sensors (Basel); 2008 Apr; 8(4):2833-2853. PubMed ID: 27879852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery.
    Qin Y; Xiao X; Dong J; Zhou Y; Zhu Z; Zhang G; Du G; Jin C; Kou W; Wang J; Li X
    ISPRS J Photogramm Remote Sens; 2015 Jul; 105():220-233. PubMed ID: 27695195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland.
    Ren S; Chen X; An S
    Int J Biometeorol; 2017 Apr; 61(4):601-612. PubMed ID: 27562030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread climate change in the Himalayas and associated changes in local ecosystems.
    Shrestha UB; Gautam S; Bawa KS
    PLoS One; 2012; 7(5):e36741. PubMed ID: 22615804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships.
    Gómez-Mendoza L; Galicia L; Cuevas-Fernández ML; Magaña V; Gómez G; Palacio-Prieto JL
    Int J Biometeorol; 2008 Jul; 52(6):511-20. PubMed ID: 18299899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.