These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11770623)

  • 1. Occurrence of Clostridium perfringens in the broiler chicken processing plant as determined by recovery in iron milk medium.
    Craven SE
    J Food Prot; 2001 Dec; 64(12):1956-60. PubMed ID: 11770623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coliform, Escherichia coli, and salmonellae concentrations in a multiple-tank, counterflow poultry scalder.
    Cason JA; Hinton A; Ingram KD
    J Food Prot; 2000 Sep; 63(9):1184-8. PubMed ID: 10983790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of MIDI-fatty acid methyl ester analysis to monitor the transmission of Campylobacter during commercial poultry processing.
    Hinton A; Cason JA; Hume ME; Ingram KD
    J Food Prot; 2004 Aug; 67(8):1610-6. PubMed ID: 15330523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic bacteria and solids in a three-tank, two-pass, counterflow scalder.
    Cason JA; Whittemore AD; Shackelford AD
    Poult Sci; 1999 Jan; 78(1):144-7. PubMed ID: 10023762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incidence of Clostridium perfringens in broiler chickens and their environment during production and processing.
    Craven SE; Stern NJ; Bailey JS; Cox NA
    Avian Dis; 2001; 45(4):887-96. PubMed ID: 11785893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence and numbers of Campylobacter on broiler carcasses collected at rehang and postchill in 20 U.S. processing plants.
    Berrang ME; Bailey JS; Altekruse SF; Patel B; Shaw WK; Meinersmann RJ; Fedorka-Cray PJ
    J Food Prot; 2007 Jul; 70(7):1556-60. PubMed ID: 17685325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling naturally contaminated broiler carcasses for Salmonella by three different methods.
    Cox NA; Buhr RJ; Smith DP; Cason JA; Rigsby LL; Bourassa DV; Fedorka-Cray PJ; Cosby DE
    J Food Prot; 2014 Mar; 77(3):493-5. PubMed ID: 24674443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prechill fecal contamination on numbers of bacteria recovered from broiler chicken carcasses before and after immersion chilling.
    Cason JA; Berrang ME; Buhr RJ; Cox NA
    J Food Prot; 2004 Sep; 67(9):1829-33. PubMed ID: 15453571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Campylobacter, Salmonella, and Escherichia coli on broiler carcasses subjected to a high pH scald and low pH postpick chlorine dip.
    Berrang ME; Windham WR; Meinersmann RJ
    Poult Sci; 2011 Apr; 90(4):896-900. PubMed ID: 21406378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unheated water in the first tank of a three-tank broiler scalder.
    Cason JA; Buhr RJ; Hinton A
    Poult Sci; 2001 Nov; 80(11):1643-6. PubMed ID: 11732682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incidence of Clostridium perfringens in commercially produced cured raw meat product mixtures and behavior in cooked products during chilling and refrigerated storage.
    Taormina PJ; Bartholomew GW; Dorsa WJ
    J Food Prot; 2003 Jan; 66(1):72-81. PubMed ID: 12540184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of Arcobacter and Campylobacter on broiler carcasses during processing.
    Son I; Englen MD; Berrang ME; Fedorka-Cray PJ; Harrison MA
    Int J Food Microbiol; 2007 Jan; 113(1):16-22. PubMed ID: 16979251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of bacteria from broiler carcasses after immersion chilling in different volumes of water, part 2.
    Northcutt JK; Cason JA; Ingram KD; Smith DP; Buhr RJ; Fletcher DL
    Poult Sci; 2008 Mar; 87(3):573-6. PubMed ID: 18281587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Clostridium perfringens spores by green tea leaf extracts during cooling of cooked ground beef, chicken, and pork.
    Juneja VK; Bari ML; Inatsu Y; Kawamoto S; Friedman M
    J Food Prot; 2007 Jun; 70(6):1429-33. PubMed ID: 17612073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiology of broiler carcasses and chemistry of chiller water as affected by water reuse.
    Northcutt JK; Smith D; Huezo RI; Ingram KD
    Poult Sci; 2008 Jul; 87(7):1458-63. PubMed ID: 18577630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-relationships of Salmonella status of flock and grow-out environment at sequential segments in broiler production and processing.
    Volkova VV; Bailey RH; Rybolt ML; Dazo-Galarneau K; Hubbard SA; Magee D; Byrd JA; Wills RW
    Zoonoses Public Health; 2010 Dec; 57(7-8):463-75. PubMed ID: 19912607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine triphosphate bioluminescence as a method to determine microbial levels in scald and chill tanks at a poultry abattoir.
    Bautista DA; Vaillancourt JP; Clarke RA; Renwick S; Griffiths MW
    Poult Sci; 1994 Nov; 73(11):1673-8. PubMed ID: 7862606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of bacteria from broiler carcass respiratory tracts before and after immersion scalding.
    Buhr RJ; Berrang ME; Cason JA; Bourassa DV
    Poult Sci; 2005 Nov; 84(11):1769-73. PubMed ID: 16463975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: analysis of a potential source of carcass contamination.
    Peyrat MB; Soumet C; Maris P; Sanders P
    Int J Food Microbiol; 2008 May; 124(2):188-94. PubMed ID: 18472175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.