These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11770846)

  • 21. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor.
    Bajaj M; Gallert C; Winter J
    Bioresour Technol; 2008 Nov; 99(17):8376-81. PubMed ID: 18440804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioremediation of phenol by a novel partitioning bioreactor using cow dung microbial consortia.
    Singh D; Fulekar MH
    Biotechnol J; 2009 Mar; 4(3):423-31. PubMed ID: 19296450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential.
    Pal Basak S; Sarkar P; Pal P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):67-77. PubMed ID: 24117085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site.
    Pino NJ; Dominguez MC; Penuela GA
    J Environ Sci Health B; 2011; 46(2):173-80. PubMed ID: 21328125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading.
    Mosca Angelucci D; Clagnan E; Brusetti L; Tomei MC
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6825-6838. PubMed ID: 32488314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenol-degrading denitrifying bacteria in wastewater sediments.
    Tong TT; Błaszczyk M; Przytocka-Jusiak M; Mycielski R
    Acta Microbiol Pol; 1998; 47(2):203-11. PubMed ID: 9839379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095.
    Song H; Liu Y; Xu W; Zeng G; Aibibu N; Xu L; Chen B
    Bioresour Technol; 2009 Nov; 100(21):5079-84. PubMed ID: 19541478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of cresols by phenol-acclimated aerobic granules.
    Lee DJ; Ho KL; Chen YY
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):209-15. PubMed ID: 20852993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The generation of high biomass from chlororespiring bacteria using a continuous fed-batch bioreactor.
    He Q; Sanford RA
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):377-82. PubMed ID: 15179526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation kinetics of 2,4,6-trichlorophenol by an acclimated mixed microbial culture under aerobic conditions.
    Snyder CJ; Asghar M; Scharer JM; Legge RL
    Biodegradation; 2006 Dec; 17(6):535-44. PubMed ID: 16489415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of benzene biotransformation under microaerophilic and oxygen-limited conditions.
    Yerushalmi L; Lascourreges JF; Guiot SR
    Biotechnol Bioeng; 2002 Aug; 79(3):347-55. PubMed ID: 12115423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of phenolic compounds from a petrochemical effluent with a methanogenic consortium.
    Charest A; Bisaillon JG; Lépine F; Beaudet R
    Can J Microbiol; 1999 Mar; 45(3):235-41. PubMed ID: 10408096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria.
    Irankhah S; Abdi Ali A; Reza Soudi M; Gharavi S; Ayati B
    World J Microbiol Biotechnol; 2018 Oct; 34(11):164. PubMed ID: 30368594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading.
    Basile LA; Erijman L
    FEMS Microbiol Ecol; 2010 Aug; 73(2):336-48. PubMed ID: 20500527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening of a microbial consortium for highly simultaneous degradation of lignocellulose and chlorophenols.
    Liang J; Peng X; Yin D; Li B; Wang D; Lin Y
    Bioresour Technol; 2015 Aug; 190():381-7. PubMed ID: 25974352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of phenol in an anaerobic fluidized bed reactor (AFBR): continuous and batch regime.
    Carbajo JB; Boltes K; Leton P
    Biodegradation; 2010 Jul; 21(4):603-13. PubMed ID: 20127147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of a phenol-adapted microbial community: degradation capacity, taxonomy and metabolic description.
    Sánchez-González M; Álvarez-Uribe H; Rivera-Solís R; González-Burgos A; Escalante-Réndiz D; Rojas-Herrera R
    J Appl Microbiol; 2019 Mar; 126(3):771-779. PubMed ID: 30489677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerobic biodegradation of 3-chlorophenol in a sequencing batch reactor: effect of cometabolism.
    Chiavola A; Baciocchi R; Irvine RL; Gavasci R; Sirini P
    Water Sci Technol; 2004; 50(10):235-42. PubMed ID: 15656318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.