These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 11770853)
1. Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Sindhu SS; Dadarwal KR Microbiol Res; 2001; 156(4):353-8. PubMed ID: 11770853 [TBL] [Abstract][Full Text] [Related]
2. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Malik DK; Sindhu SS Physiol Mol Biol Plants; 2011 Mar; 17(1):25-32. PubMed ID: 23572992 [TBL] [Abstract][Full Text] [Related]
3. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. Vinayarani G; Prakash HS World J Microbiol Biotechnol; 2018 Mar; 34(3):49. PubMed ID: 29541936 [TBL] [Abstract][Full Text] [Related]
4. Chickpea (Cicer arietinum L.) as model legume for decoding the co-existence of Pseudomonas fluorescens and Mesorhizobium sp. as bio-fertilizer under diverse agro-climatic zones. Nagpal S; Sharma P; Sirari A; Kumawat KC; Wati L; Gupta SC; Mandahal KS Microbiol Res; 2021 Jun; 247():126720. PubMed ID: 33592359 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea. Singh SP; Gaur R J Appl Microbiol; 2016 Aug; 121(2):506-18. PubMed ID: 27170067 [TBL] [Abstract][Full Text] [Related]
6. Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Nascimento FX; Brígido C; Glick BR; Oliveira S; Alho L Lett Appl Microbiol; 2012 Jul; 55(1):15-21. PubMed ID: 22486441 [TBL] [Abstract][Full Text] [Related]
7. Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. Cicer. Sivaramaiah N; Malik DK; Sindhu SS Indian J Microbiol; 2007 Mar; 47(1):51-6. PubMed ID: 23100640 [TBL] [Abstract][Full Text] [Related]
8. Characterization of rhizosphere bacteria for control of phytopathogenic fungi of tomato. Pastor N; Carlier E; Andrés J; Rosas SB; Rovera M J Environ Manage; 2012 Mar; 95 Suppl():S332-7. PubMed ID: 21507555 [TBL] [Abstract][Full Text] [Related]
9. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Zhang JJ; Yu T; Lou K; Mao PH; Wang ET; Chen WF; Chen WX Syst Appl Microbiol; 2014 Oct; 37(7):520-4. PubMed ID: 25123757 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of soil microorganisms with inhibitory activity against Rhizoctonia solani causal agent of the damping-off of canola. Ciampi L; Tewari JP Arch Biol Med Exp; 1990 Oct; 23(2):101-12. PubMed ID: 2133515 [TBL] [Abstract][Full Text] [Related]
11. Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescens NBRI2650 in the soil and phytosphere. Nautlyal CS; Johri JK; Singh HB Can J Microbiol; 2002 Jul; 48(7):588-601. PubMed ID: 12224558 [TBL] [Abstract][Full Text] [Related]
12. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Arora NK; Kim MJ; Kang SC; Maheshwari DK Can J Microbiol; 2007 Feb; 53(2):207-12. PubMed ID: 17496968 [TBL] [Abstract][Full Text] [Related]
13. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Andersen JB; Koch B; Nielsen TH; Sørensen D; Hansen M; Nybroe O; Christophersen C; Sørensen J; Molin S; Givskov M Microbiology (Reading); 2003 Jan; 149(Pt 1):37-46. PubMed ID: 12576578 [TBL] [Abstract][Full Text] [Related]
14. CHARACTERIZATION AND BIOCONTROL POTENT OF STREPTOMYCES SP. ISOLATED FROM THE RHIZOSPHERE OF ONONIS ANGUSTISSIMA LAM. Ghadbane M; Belhadj H; Medjekal S; Harzallah D Commun Agric Appl Biol Sci; 2015; 80(3):555-7. PubMed ID: 27141751 [TBL] [Abstract][Full Text] [Related]
15. Effect of plant growth-promoting Rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Singh UP; Sarma BK; Singh DP Curr Microbiol; 2003 Feb; 46(2):131-40. PubMed ID: 12520369 [TBL] [Abstract][Full Text] [Related]
16. Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Hynes RK; Leung GC; Hirkala DL; Nelson LM Can J Microbiol; 2008 Apr; 54(4):248-58. PubMed ID: 18388997 [TBL] [Abstract][Full Text] [Related]
17. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Naik PR; Sakthivel N Res Microbiol; 2006; 157(6):538-46. PubMed ID: 16797931 [TBL] [Abstract][Full Text] [Related]
18. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Inglis GD; Kawchuk LM Can J Microbiol; 2002 Jan; 48(1):60-70. PubMed ID: 11888164 [TBL] [Abstract][Full Text] [Related]
19. Suppression of seed rot and preemergence of chickpea by seed treatments with fluorescent pseudomonads in Iran. Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):943-52. PubMed ID: 17390843 [TBL] [Abstract][Full Text] [Related]
20. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Nagarajkumar M; Bhaskaran R; Velazhahan R Microbiol Res; 2004; 159(1):73-81. PubMed ID: 15160609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]