BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 11771124)

  • 1. [Study on regulation of long-chain fatty acid metabolism with the use of computer analysis of complete bacterial genomes].
    Sadovskaia NS; Laĭkov ON; Mironov AA; Gel'fand MS
    Mol Biol (Mosk); 2001; 35(6):1010-4. PubMed ID: 11771124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship.
    Gregersen N; Andresen BS; Corydon MJ; Corydon TJ; Olsen RK; Bolund L; Bross P
    Hum Mutat; 2001 Sep; 18(3):169-89. PubMed ID: 11524729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of fatty acid metabolism in bacteria.
    Fujita Y; Matsuoka H; Hirooka K
    Mol Microbiol; 2007 Nov; 66(4):829-39. PubMed ID: 17919287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular effect of FadD on the regulation and metabolism of fatty acid in Escherichia coli.
    Zhang H; Wang P; Qi Q
    FEMS Microbiol Lett; 2006 Jun; 259(2):249-53. PubMed ID: 16734787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential induction of genes in liver and brown adipose tissue regulated by peroxisome proliferator-activated receptor-alpha during fasting and cold exposure in acyl-CoA dehydrogenase-deficient mice.
    Goetzman ES; Tian L; Wood PA
    Mol Genet Metab; 2005 Jan; 84(1):39-47. PubMed ID: 15639194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins.
    Iram SH; Cronan JE
    J Biol Chem; 2005 Sep; 280(37):32148-56. PubMed ID: 16027119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal screening for very long-chain acyl-coA dehydrogenase deficiency: enzymatic and molecular evaluation of neonates with elevated C14:1-carnitine levels.
    Liebig M; Schymik I; Mueller M; Wendel U; Mayatepek E; Ruiter J; Strauss AW; Wanders RJ; Spiekerkoetter U
    Pediatrics; 2006 Sep; 118(3):1065-9. PubMed ID: 16950999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gene cluster for the fatty acid catabolism from Pseudonocardia autotrophica BCRC12444.
    Chen CH; Cheng JC; Cho YC; Hsu WH
    Biochem Biophys Res Commun; 2005 Apr; 329(3):863-8. PubMed ID: 15752735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse.
    Brix AE; Elgavish A; Nagy TR; Gower BA; Rhead WJ; Wood PA
    Mol Genet Metab; 2002 Mar; 75(3):219-26. PubMed ID: 11914033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and purification of His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase wild-type and Arg256 mutant proteins.
    Zeng J; Li D
    Protein Expr Purif; 2004 Oct; 37(2):472-8. PubMed ID: 15358373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis.
    Yeh CS; Wang JY; Cheng TL; Juan CH; Wu CH; Lin SR
    Cancer Lett; 2006 Feb; 233(2):297-308. PubMed ID: 15885896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase.
    Clark-Taylor T; Clark-Taylor BE
    Med Hypotheses; 2004; 62(6):970-5. PubMed ID: 15142659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase.
    Wang H; Cronan JE
    Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile acylcarnitine profiles in pediatric liver disease do not interfere with the diagnosis of long-chain fatty acid oxidation defects.
    Fuda F; Narayan SB; Squires RH; Bennett MJ
    Clin Chim Acta; 2006 May; 367(1-2):185-8. PubMed ID: 16414039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of FadR binding capacity for acyl-CoA fatty acids through structure-guided mutagenesis.
    Bacik JP; Yeager CM; Twary SN; Martí-Arbona R
    Protein J; 2015 Oct; 34(5):359-66. PubMed ID: 26385696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders.
    Djouadi F; Aubey F; Schlemmer D; Ruiter JP; Wanders RJ; Strauss AW; Bastin J
    Hum Mol Genet; 2005 Sep; 14(18):2695-703. PubMed ID: 16115821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dietary fatty acid chain-length on metabolic tolerance in mouse models of inherited defects in mitochondrial fatty acid beta-oxidation.
    Schuler AM; Gower BA; Matern D; Rinaldo P; Wood PA
    Mol Genet Metab; 2004 Dec; 83(4):322-9. PubMed ID: 15589119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for impaired gluconeogenesis in very long-chain acyl-CoA dehydrogenase-deficient mice.
    Spiekerkoetter U; Ruiter J; Tokunaga C; Wendel U; Mayatepek E; Wijburg FA; Strauss AW; Wanders RJ
    Horm Metab Res; 2006 Oct; 38(10):625-30. PubMed ID: 17075770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative inhibition studies of enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation.
    Wu L; Lin S; Li D
    Org Lett; 2008 Aug; 10(15):3355-8. PubMed ID: 18611036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing fatty acid production by the expression of the regulatory transcription factor FadR.
    Zhang F; Ouellet M; Batth TS; Adams PD; Petzold CJ; Mukhopadhyay A; Keasling JD
    Metab Eng; 2012 Nov; 14(6):653-60. PubMed ID: 23026122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.