BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 11771135)

  • 1. [Kinetic modeling of energy metabolism and generation of active forms of oxygen in hepatocyte mitochondria].
    Demin OV; Gorianin II; Kholodenko BN; Westerhoff HV
    Mol Biol (Mosk); 2001; 35(6):1095-104. PubMed ID: 11771135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of superoxide generation with the bc1 complex of mitochondria.
    Demin OV; Westerhoff HV; Kholodenko BN
    Biochemistry (Mosc); 1998 Jun; 63(6):634-49. PubMed ID: 9668203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Creation of Delta mu(H)+ equal to 250 mV on the inner mitochondrial membrane is necessary, but not a sufficient condition for ATP synthesis].
    Dmitriev LF; Ivanova MV; Davletshina LN
    Biokhimiia; 1993 Feb; 58(2):255-60. PubMed ID: 8485215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of O2.-generation in the complex III of the electron transport chain.
    Demin OV; Kholodenko BN; Skulachev VP
    Mol Cell Biochem; 1998 Jul; 184(1-2):21-33. PubMed ID: 9746310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of hepatic mitochondrial bioenergetics is not a primary mechanism for the toxicity of methoprene - relevance for toxicological assessment.
    Monteiro JP; Oliveira PJ; Moreno AJ; Jurado AS
    Chemosphere; 2008 Jul; 72(9):1347-54. PubMed ID: 18511104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria.
    Czyz A; Szewczyk A; Nałecz MJ; Wojtczak L
    Biochem Biophys Res Commun; 1995 May; 210(1):98-104. PubMed ID: 7741755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production.
    López A; García JA; Escames G; Venegas C; Ortiz F; López LC; Acuña-Castroviejo D
    J Pineal Res; 2009 Mar; 46(2):188-98. PubMed ID: 19054298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular kinetic analysis reveals differences in Cd2+ and Cu2+ ion-induced impairment of oxidative phosphorylation in liver.
    Ciapaite J; Nauciene Z; Baniene R; Wagner MJ; Krab K; Mildaziene V
    FEBS J; 2009 Jul; 276(13):3656-68. PubMed ID: 19496816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):645-51. PubMed ID: 2836196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Production of oxygen free radicals by cardiac mitochondria: effect of hypoxia-reoxygenation].
    Sviriaeva IV; Ruuge EK
    Biofizika; 2006; 51(3):478-84. PubMed ID: 16808347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New control of mitochondrial membrane potential and ROS formation--a hypothesis.
    Lee I; Bender E; Arnold S; Kadenbach B
    Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):637-44. PubMed ID: 2836195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria.
    Korshunov SS; Skulachev VP; Starkov AA
    FEBS Lett; 1997 Oct; 416(1):15-8. PubMed ID: 9369223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability.
    Fernandes MA; Santos MS; Moreno AJ; Duburs G; Oliveira CR; Vicente JA
    J Biochem Mol Toxicol; 2004; 18(3):162-9. PubMed ID: 15252873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct, real-time monitoring of superoxide generation in isolated mitochondria.
    Henderson JR; Swalwell H; Boulton S; Manning P; McNeil CJ; Birch-Machin MA
    Free Radic Res; 2009 Sep; 43(9):796-802. PubMed ID: 19562601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle.
    Mulkidjanian AY
    Photochem Photobiol Sci; 2007 Jan; 6(1):19-34. PubMed ID: 17200733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.