These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11771423)

  • 1. RGS function in visual signal transduction.
    He W; Wensel TG
    Methods Enzymol; 2002; 344():724-40. PubMed ID: 11771423
    [No Abstract]   [Full Text] [Related]  

  • 2. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein.
    Skiba NP; Hopp JA; Arshavsky VY
    J Biol Chem; 2000 Oct; 275(42):32716-20. PubMed ID: 10973941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1.
    Chen CK; Burns ME; He W; Wensel TG; Baylor DA; Simon MI
    Nature; 2000 Feb; 403(6769):557-60. PubMed ID: 10676965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling.
    Chen CK; Wieland T; Simon MI
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12885-9. PubMed ID: 8917514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic approaches to study the function of RGS9 isoforms.
    Martemyanov KA; Arshavsky VY
    Methods Enzymol; 2004; 390():196-209. PubMed ID: 15488179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RGS9, a GTPase accelerator for phototransduction.
    He W; Cowan CW; Wensel TG
    Neuron; 1998 Jan; 20(1):95-102. PubMed ID: 9459445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymology of GTPase acceleration in phototransduction.
    Cowan CW; Wensel TG; Arshavsky VY
    Methods Enzymol; 2000; 315():524-38. PubMed ID: 10736724
    [No Abstract]   [Full Text] [Related]  

  • 8. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule.
    McEntaffer RL; Natochin M; Artemyev NO
    Biochemistry; 1999 Apr; 38(16):4931-7. PubMed ID: 10213594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B; Natochin M; Artemyev NO
    Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C in rod outer segments: effects of phosphorylation of the phosphodiesterase inhibitory subunit.
    Udovichenko IP; Cunnick J; Gonzalez K; Yakhnin A; Takemoto DJ
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):291-5. PubMed ID: 8694778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins.
    Heck M; Pulvermüller A; Hofmann KP
    Methods Enzymol; 2000; 315():329-47. PubMed ID: 10736711
    [No Abstract]   [Full Text] [Related]  

  • 13. Chromium(III) beta, gamma-bidentate guanine nucleotide complexes as probes of the GTP-activated cGMP cascade of retinal rod outer segments.
    Frey SE; Hingorani VN; Su-Tsai SM; Ho YK
    Biochemistry; 1988 Oct; 27(21):8209-18. PubMed ID: 2852956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transducin GTPase provides for rapid quenching of the cGMP cascade in rod outer segments.
    Arshavsky VYu ; Antoch MP; Lukjanov KA; Philippov PP
    FEBS Lett; 1989 Jul; 250(2):353-6. PubMed ID: 2546803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the regulator of G protein signaling RGS9-1 by protein kinase A is a potential mechanism of light- and Ca2+-mediated regulation of G protein function in photoreceptors.
    Balasubramanian N; Levay K; Keren-Raifman T; Faurobert E; Slepak VZ
    Biochemistry; 2001 Oct; 40(42):12619-27. PubMed ID: 11601986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP
    Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosducin down-regulation of G-protein coupling: reconstitution of phosducin and transducin of cGMP cascade in bovine rod photoreceptor cells.
    Ho YK; Ting TD; Lee RH
    Methods Enzymol; 2002; 344():126-39. PubMed ID: 11771377
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of human retinal RGS with G-protein alpha-subunits.
    Natochin M; Lipkin VM; Artemyev NO
    FEBS Lett; 1997 Jul; 411(2-3):179-82. PubMed ID: 9271201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transducin activation and deactivation in rod systems of different structural integrity. Attempts at a focussed view through scattered light.
    Uhl R; Ryba NJ
    Biochim Biophys Acta; 1990 Aug; 1054(1):56-68. PubMed ID: 2200527
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic mechanism of RGS9-1 potentiation by R9AP.
    Baker SA; Martemyanov KA; Shavkunov AS; Arshavsky VY
    Biochemistry; 2006 Sep; 45(35):10690-7. PubMed ID: 16939221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.