BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11771723)

  • 1. Oriented principal component analysis for large margin classifiers.
    Bermejo S; Cabestany J
    Neural Netw; 2001 Dec; 14(10):1447-61. PubMed ID: 11771723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and robust feature extraction by maximum margin criterion.
    Li H; Jiang T; Zhang K
    IEEE Trans Neural Netw; 2006 Jan; 17(1):157-65. PubMed ID: 16526484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical mechanics of learning with soft margin classifiers.
    Risau-Gusman S; Gordon MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031907. PubMed ID: 11580367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation.
    Fernández-Delgado M; Cernadas E; Barro S; Ribeiro J; Neves J
    Neural Netw; 2014 Feb; 50():60-71. PubMed ID: 24287336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers.
    Chan HP; Sahiner B; Wagner RF; Petrick N
    Med Phys; 1999 Dec; 26(12):2654-68. PubMed ID: 10619251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized locality preserving Maxi-Min Margin Machine.
    Zhang Z; Choi KS; Luo X; Wang S
    Neural Netw; 2012 Dec; 36():18-24. PubMed ID: 23037772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale maximum margin discriminant analysis using core vector machines.
    Tsang IH; Kocsor A; Kwok JY
    IEEE Trans Neural Netw; 2008 Apr; 19(4):610-24. PubMed ID: 18390308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural regularized support vector machine: a framework for structural large margin classifier.
    Xue H; Chen S; Yang Q
    IEEE Trans Neural Netw; 2011 Apr; 22(4):573-87. PubMed ID: 21385668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving gene expression cancer molecular pattern discovery using nonnegative principal component analysis.
    Han X
    Genome Inform; 2008; 21():200-11. PubMed ID: 19425159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maxi-min margin machine: learning large margin classifiers locally and globally.
    Huang K; Yang H; King I; Lyu MR
    IEEE Trans Neural Netw; 2008 Feb; 19(2):260-72. PubMed ID: 18269957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size.
    Sahiner B; Chan HP; Petrick N; Wagner RF; Hadjiiski L
    Med Phys; 2000 Jul; 27(7):1509-22. PubMed ID: 10947254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.
    Jankovic M; Ogawa H
    Int J Neural Syst; 2004 Oct; 14(5):313-23. PubMed ID: 15593379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting random subspace method.
    García-Pedrajas N; Ortiz-Boyer D
    Neural Netw; 2008 Nov; 21(9):1344-62. PubMed ID: 18272334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model, analysis, and evaluation of the effects of analog VLSI arithmetic on linear subspace-based image recognition.
    Carvajal G; Figueroa M
    Neural Netw; 2014 Jul; 55():72-82. PubMed ID: 24732237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting through optimization of margin distributions.
    Shen C; Li H
    IEEE Trans Neural Netw; 2010 Apr; 21(4):659-66. PubMed ID: 20172821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncorrelated multilinear principal component analysis for unsupervised multilinear subspace learning.
    Lu H; Plataniotis KN; Venetsanopoulos AN
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1820-36. PubMed ID: 19789108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs.
    Kumaran Nair SS; Subba Reddy NV; Hareesha KS
    Protein Pept Lett; 2012 Sep; 19(9):917-23. PubMed ID: 22486618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.