These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 11771973)

  • 1. Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing.
    Zurowski B; Gostomzyk J; Grön G; Weller R; Schirrmeister H; Neumeier B; Spitzer M; Reske SN; Walter H
    Neuroimage; 2002 Jan; 15(1):45-57. PubMed ID: 11771973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An fMRI study of phonological and spatial working memory using identical stimuli.
    Lycke C; Specht K; Ersland L; Hugdahl K
    Scand J Psychol; 2008 Oct; 49(5):393-01. PubMed ID: 18705673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD; Bullmore ET; Sharma T
    Neuroimage; 2000 Nov; 12(5):495-503. PubMed ID: 11034857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of working memory processing associated with native and second languages: PET investigation.
    Kim JJ; Kim MS; Lee JS; Lee DS; Lee MC; Kwon JS
    Neuroimage; 2002 Apr; 15(4):879-91. PubMed ID: 11906228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PET evidence for an amodal verbal working memory system.
    Schumacher EH; Lauber E; Awh E; Jonides J; Smith EE; Koeppe RA
    Neuroimage; 1996 Apr; 3(2):79-88. PubMed ID: 9345478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia.
    Walter H; Wunderlich AP; Blankenhorn M; Schäfer S; Tomczak R; Spitzer M; Grön G
    Schizophr Res; 2003 Jun; 61(2-3):175-84. PubMed ID: 12729869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The left intraparietal sulcus and verbal short-term memory: focus of attention or serial order?
    Majerus S; Poncelet M; Van der Linden M; Albouy G; Salmon E; Sterpenich V; Vandewalle G; Collette F; Maquet P
    Neuroimage; 2006 Aug; 32(2):880-91. PubMed ID: 16702002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention.
    Coull JT; Frith CD
    Neuroimage; 1998 Aug; 8(2):176-87. PubMed ID: 9740760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli.
    Zarahn E; Rakitin B; Abela D; Flynn J; Stern Y
    Cereb Cortex; 2005 Mar; 15(3):303-16. PubMed ID: 15342440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PET study of stimulus- and task-induced semantic processing.
    Noppeney U; Price CJ
    Neuroimage; 2002 Apr; 15(4):927-35. PubMed ID: 11906233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the prefrontal cortex in recognition memory and memory for source: an fMRI study.
    Rugg MD; Fletcher PC; Chua PM; Dolan RJ
    Neuroimage; 1999 Nov; 10(5):520-9. PubMed ID: 10547329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Load-dependent roles of frontal brain regions in the maintenance of working memory.
    Rypma B; Prabhakaran V; Desmond JE; Glover GH; Gabrieli JD
    Neuroimage; 1999 Feb; 9(2):216-26. PubMed ID: 9927550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of the distinct visual representations of faces and names: a PET activation study.
    Campanella S; Joassin F; Rossion B; De Volder A; Bruyer R; Crommelinck M
    Neuroimage; 2001 Oct; 14(4):873-82. PubMed ID: 11554806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional neuroanatomy of semantic memory: recognition of semantic associations.
    Ricci PT; Zelkowicz BJ; Nebes RD; Meltzer CC; Mintun MA; Becker JT
    Neuroimage; 1999 Jan; 9(1):88-96. PubMed ID: 9918730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroimaging studies of working memory: a meta-analysis.
    Wager TD; Smith EE
    Cogn Affect Behav Neurosci; 2003 Dec; 3(4):255-74. PubMed ID: 15040547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorganization of frontal systems used by alcoholics for spatial working memory: an fMRI study.
    Pfefferbaum A; Desmond JE; Galloway C; Menon V; Glover GH; Sullivan EV
    Neuroimage; 2001 Jul; 14(1 Pt 1):7-20. PubMed ID: 11525339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable brain activations during the retrieval of different kinds of spatial context memory.
    Suzuki M; Tsukiura T; Matsue Y; Yamadori A; Fujii T
    Neuroimage; 2005 Apr; 25(3):993-1001. PubMed ID: 15808999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of frontopolar cortex in subgoal processing during working memory.
    Braver TS; Bongiolatti SR
    Neuroimage; 2002 Mar; 15(3):523-36. PubMed ID: 11848695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.