These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 11771985)

  • 1. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results.
    Opitz B; Rinne T; Mecklinger A; von Cramon DY; Schröger E
    Neuroimage; 2002 Jan; 15(1):167-74. PubMed ID: 11771985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence.
    Doeller CF; Opitz B; Mecklinger A; Krick C; Reith W; Schröger E
    Neuroimage; 2003 Oct; 20(2):1270-82. PubMed ID: 14568496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance.
    Tse CY; Penney TB
    Neuroimage; 2008 Jul; 41(4):1462-70. PubMed ID: 18474433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evidence for differential roles of temporal and frontal components of auditory change detection.
    Shalgi S; Deouell LY
    Neuropsychologia; 2007 Apr; 45(8):1878-88. PubMed ID: 17239410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study.
    Rinne T; Degerman A; Alho K
    Neuroimage; 2005 May; 26(1):66-72. PubMed ID: 15862206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials.
    Novitski N; Alho K; Korzyukov O; Carlson S; Martinkauppi S; Escera C; Rinne T; Aronen HJ; Näätänen R
    Neuroimage; 2001 Jul; 14(1 Pt 1):244-51. PubMed ID: 11525334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-related optical imaging reveals the temporal dynamics of right temporal and frontal cortex activation in pre-attentive change detection.
    Tse CY; Tien KR; Penney TB
    Neuroimage; 2006 Jan; 29(1):314-20. PubMed ID: 16095922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm.
    Liebenthal E; Ellingson ML; Spanaki MV; Prieto TE; Ropella KM; Binder JR
    Neuroimage; 2003 Aug; 19(4):1395-404. PubMed ID: 12948697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs.
    Codispoti M; Ferrari V; Junghöfer M; Schupp HT
    Neuroimage; 2006 Aug; 32(2):583-91. PubMed ID: 16750397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable cerebral responses to equally distinct deviance in four auditory dimensions: a mismatch negativity study.
    Deouell LY; Bentin S
    Psychophysiology; 1998 Nov; 35(6):745-54. PubMed ID: 9844436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fronto-temporal interactions in the theta-band during auditory deviant processing.
    Choi JW; Lee JK; Ko D; Lee GT; Jung KY; Kim KH
    Neurosci Lett; 2013 Aug; 548():120-5. PubMed ID: 23769731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mismatch negativity in children and adults, and effects of an attended task.
    Gomes H; Molholm S; Ritter W; Kurtzberg D; Cowan N; Vaughan HG
    Psychophysiology; 2000 Nov; 37(6):807-16. PubMed ID: 11117461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional load of the primary task influences the frontal but not the temporal generators of mismatch negativity.
    Restuccia D; Della Marca G; Marra C; Rubino M; Valeriani M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):891-9. PubMed ID: 16289727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of cortical mismatch responses to occasional pitch change in early infancy: effects of presentation rate and magnitude of change.
    He C; Hotson L; Trainor LJ
    Neuropsychologia; 2009 Jan; 47(1):218-29. PubMed ID: 18722392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators.
    Deouell LY; Bentin S; Giard MH
    Psychophysiology; 1998 Jul; 35(4):355-65. PubMed ID: 9643050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation processes in automatic change detection as revealed by event-related brain potentials and dipole source localization: significance for adult AD/HD.
    Wild-Wall N; Oades RD; Juran SA
    Int J Psychophysiol; 2005 Oct; 58(1):34-46. PubMed ID: 15922470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes.
    Jemel B; Achenbach C; Müller BW; Röpcke B; Oades RD
    Brain Topogr; 2002; 15(1):13-27. PubMed ID: 12371672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortico-cortical phase synchrony in auditory mismatch processing.
    Hsiao FJ; Cheng CH; Liao KK; Lin YY
    Biol Psychol; 2010 May; 84(2):336-45. PubMed ID: 20380866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.