BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11772041)

  • 1. 15N kinetic isotope effects on uncatalyzed and enzymatic deamination of cytidine.
    Snider MJ; Reinhardt L; Wolfenden R; Cleland WW
    Biochemistry; 2002 Jan; 41(1):415-21. PubMed ID: 11772041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence from nitrogen-15 and solvent deuterium isotope effects on the chemical mechanism of adenosine deaminase.
    Weiss PM; Cook PF; Hermes JD; Cleland WW
    Biochemistry; 1987 Nov; 26(23):7378-84. PubMed ID: 3427079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-base catalysis by UDP-galactose 4-epimerase: correlations of kinetically measured acid dissociation constants with thermodynamic values for tyrosine 149.
    Berger E; Arabshahi A; Wei Y; Schilling JF; Frey PA
    Biochemistry; 2001 Jun; 40(22):6699-705. PubMed ID: 11380265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate.
    Hermes JD; Tipton PA; Fisher MA; O'Leary MH; Morrison JF; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6263-75. PubMed ID: 6395898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1998 Feb; 37(5):1199-203. PubMed ID: 9477944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of C-3 hydrogen exchange and the elimination of ammonia in the 3-methylaspartate ammonia-lyase reaction.
    Botting NP; Gani D
    Biochemistry; 1992 Feb; 31(5):1509-20. PubMed ID: 1531295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the relative timing of hydrogen abstraction steps in the flavocytochrome b2 reaction with primary and solvent deuterium isotope effects and mutant enzymes.
    Sobrado P; Daubner SC; Fitzpatrick PF
    Biochemistry; 2001 Jan; 40(4):994-1001. PubMed ID: 11170421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epimer interconversion, isomerization, and hydrolysis of tetrahydrouridine: implications for cytidine deaminase inhibition.
    Xiang TX; Niemi R; Bummer P; Anderson BD
    J Pharm Sci; 2003 Oct; 92(10):2027-39. PubMed ID: 14502542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate connectivity effects in the transition state for cytidine deaminase.
    Carlow D; Wolfenden R
    Biochemistry; 1998 Aug; 37(34):11873-8. PubMed ID: 9718310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major contribution of a carboxymethyl group to transition-state stabilization by cytidine deaminase: mutation and rescue.
    Carlow DC; Smith AA; Yang CC; Short SA; Wolfenden R
    Biochemistry; 1995 Apr; 34(13):4220-4. PubMed ID: 7703234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the rate-limiting steps for malic enzyme by the use of isotope effects and other kinetic studies.
    Schimerlik MI; Grimshaw CE; Cleland WW
    Biochemistry; 1977 Feb; 16(4):571-6. PubMed ID: 13820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some kinetic studies on cytidine aminohydrolase activity from Aspergillus niger NRRL3.
    Ali TH
    Acta Microbiol Pol; 1998; 47(4):365-72. PubMed ID: 10333559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis.
    Guo H; Rao N; Xu Q; Guo H
    J Am Chem Soc; 2005 Mar; 127(9):3191-7. PubMed ID: 15740159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the mechanism of nitrogen transfer in Escherichia coli asparagine synthetase by using heavy atom isotope effects.
    Stoker PW; O'Leary MH; Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3024-30. PubMed ID: 8608141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.