These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 11772435)
1. Quantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning. Wallace DG; Hines DJ; Whishaw IQ J Neurosci Methods; 2002 Jan; 113(2):131-45. PubMed ID: 11772435 [TBL] [Abstract][Full Text] [Related]
2. Fimbria-fornix lesions disrupt the dead reckoning (homing) component of exploratory behavior in mice. Gorny JH; Gorny B; Wallace DG; Whishaw IQ Learn Mem; 2002; 9(6):387-94. PubMed ID: 12464698 [TBL] [Abstract][Full Text] [Related]
3. Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests. Whishaw IQ; Hines DJ; Wallace DG Behav Brain Res; 2001 Dec; 127(1-2):49-69. PubMed ID: 11718884 [TBL] [Abstract][Full Text] [Related]
4. NMDA lesions of Ammon's horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning. Wallace DG; Whishaw IQ Eur J Neurosci; 2003 Aug; 18(3):513-23. PubMed ID: 12911747 [TBL] [Abstract][Full Text] [Related]
5. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Hines DJ; Whishaw IQ Eur J Neurosci; 2005 Nov; 22(9):2363-75. PubMed ID: 16262675 [TBL] [Abstract][Full Text] [Related]
6. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning. Martin MM; Horn KL; Kusman KJ; Wallace DG Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862 [TBL] [Abstract][Full Text] [Related]
7. Movements of exploration intact in rats with hippocampal lesions. Clark BJ; Hines DJ; Hamilton DA; Whishaw IQ Behav Brain Res; 2005 Aug; 163(1):91-9. PubMed ID: 15904983 [TBL] [Abstract][Full Text] [Related]
8. Vestibular information is required for dead reckoning in the rat. Wallace DG; Hines DJ; Pellis SM; Whishaw IQ J Neurosci; 2002 Nov; 22(22):10009-17. PubMed ID: 12427858 [TBL] [Abstract][Full Text] [Related]
9. Movement characteristics support a role for dead reckoning in organizing exploratory behavior. Wallace DG; Hamilton DA; Whishaw IQ Anim Cogn; 2006 Jul; 9(3):219-28. PubMed ID: 16767471 [TBL] [Abstract][Full Text] [Related]
10. A video demonstration of preserved piloting by scent tracking but impaired dead reckoning after fimbria-fornix lesions in the rat. Whishaw IQ; Gorny BP J Vis Exp; 2009 Apr; (26):. PubMed ID: 19398947 [TBL] [Abstract][Full Text] [Related]
11. Calibrating space: exploration is important for allothetic and idiothetic navigation. Whishaw IQ; Brooks BL Hippocampus; 1999; 9(6):659-67. PubMed ID: 10641759 [TBL] [Abstract][Full Text] [Related]
12. Piloting and dead reckoning dissociated by fimbria-fornix lesions in a rat food carrying task. Whishaw IQ; Tomie J Behav Brain Res; 1997 Dec; 89(1-2):87-97. PubMed ID: 9475617 [TBL] [Abstract][Full Text] [Related]
13. The medial frontal cortex contributes to but does not organize rat exploratory behavior. Blankenship PA; Stuebing SL; Winter SS; Cheatwood JL; Benson JD; Whishaw IQ; Wallace DG Neuroscience; 2016 Nov; 336():1-11. PubMed ID: 27590266 [TBL] [Abstract][Full Text] [Related]
14. The development of spatial capacity in piloting and dead reckoning by infant rats: use of the huddle as a home base for spatial navigation. Loewen I; Wallace DG; Whishaw IQ Dev Psychobiol; 2005 May; 46(4):350-61. PubMed ID: 15832318 [TBL] [Abstract][Full Text] [Related]
15. Rats with fimbria-fornix lesions are impaired in path integration: a role for the hippocampus in "sense of direction". Whishaw IQ; Maaswinkel H J Neurosci; 1998 Apr; 18(8):3050-8. PubMed ID: 9526022 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the effects of fimbria-fornix, hippocampal, or entorhinal cortex lesions on spatial reference and working memory in rats: short versus long postsurgical recovery period. Galani R; Obis S; Coutureau E; Jarrard L; Cassel JC Neurobiol Learn Mem; 2002 Jan; 77(1):1-16. PubMed ID: 11749082 [TBL] [Abstract][Full Text] [Related]
17. Path integration absent in scent-tracking fimbria-fornix rats: evidence for hippocampal involvement in "sense of direction" and "sense of distance" using self-movement cues. Whishaw IQ; Gorny B J Neurosci; 1999 Jun; 19(11):4662-73. PubMed ID: 10341264 [TBL] [Abstract][Full Text] [Related]
18. Transecting the dorsal fornix results in novelty detection but not temporal ordering deficits in rats. Hunsaker MR; Kesner RP Behav Brain Res; 2009 Jul; 201(1):192-7. PubMed ID: 19428633 [TBL] [Abstract][Full Text] [Related]
19. Impaired dodging in food-conflict following fimbria-fornix transection in rats: a novel hippocampal formation deficit. Oddie SD; Kirk IJ; Gorny BP; Whishaw IQ; Bland BH Brain Res Bull; 2002 Mar; 57(5):565-73. PubMed ID: 11927357 [TBL] [Abstract][Full Text] [Related]
20. Selective lesions of the entorhinal cortex, the hippocampus, or the fimbria-fornix in rats: a comparison of effects on spontaneous and amphetamine-induced locomotion. Coutureau E; Galani R; Jarrard LE; Cassel JC Exp Brain Res; 2000 Apr; 131(3):381-92. PubMed ID: 10789953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]