These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11772830)

  • 1. Acute experimental allergic encephalomyelitis increases lumbar spinal cord incorporation of epidurally administered [(3)H]-D-mannitol and [(14)C]-carboxyl-inulin in rabbits.
    Naidu KA; Fu ES; Prockop LD
    Anesth Analg; 2002 Jan; 94(1):208-12, table of contents. PubMed ID: 11772830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epinephrine increases the selective permeability of epidurally administered [3H]-D-mannitol and [14C]-carboxyl-inulin across the blood-spinal cord barrier.
    Naidu KA; Fu ES; Prockop LD
    J Spinal Cord Med; 1996 Jul; 19(3):176-82. PubMed ID: 8819025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective permeability of [3H]-D-mannitol and [14C]-carboxyl-inulin across the blood-brain barrier and blood-spinal cord barrier in the rabbit.
    Prockop LD; Naidu KA; Binard JE; Ransohoff J
    J Spinal Cord Med; 1995 Oct; 18(4):221-6. PubMed ID: 8591066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entry rate kinetics of D-mannitol and carboxyl-inulin for transfer across the blood-cerebrospinal fluid barrier.
    Prockop LD; Naidu KA
    J Spinal Cord Med; 1997 Oct; 20(4):391-4. PubMed ID: 9360218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epinephrine increases spinal cord concentrations of [3H]-clonidine hydrochloride in rabbits after epidural infusion.
    Fu ES; Naidu KA; Prockop LD
    Anesth Analg; 1997 Aug; 85(2):324-7. PubMed ID: 9249108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Intensity of incorporation of 2-C14-acetate into the cerebrosides and gangliosides of the brain and spinal cord of rabbits in experimental allergic encephalomyelitis].
    Taranova NP; Katsnel'son IP
    Vopr Med Khim; 1976; 22(1):108-12. PubMed ID: 1025874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in phospholipid composition of the spinal cord in rabbits with allergic encephalomyelitis as an experimental model of multiple sclerosis.
    Revina ES; Gromova NV; Timoshina TE
    Bull Exp Biol Med; 2011 Dec; 152(2):224-7. PubMed ID: 22808466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of experimental allergic encephalomyelitis on the intensity of phospholipid metabolism in the brain and spinal cord].
    Zuber VL; Taranova NP
    Vopr Med Khim; 1978; 24(3):322-6. PubMed ID: 664458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Intensity of phospholipid and cholesterol synthesis in the brain and spinal cord of rabbits with experimental allergic encephelomyelitis].
    Taranova NN; Katsnel'son IP
    Biull Eksp Biol Med; 1976 Mar; 81(3):291-3. PubMed ID: 953270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myelin basic protein in experimental allergic encephalomyelitis is not affected at the posttranslational level: implications for demyelinating disease.
    Mastronardi FG; al-Sabbagh A; Nelson PA; Rego J; Roots BI; Moscarello MA
    J Neurosci Res; 1996 May; 44(4):344-9. PubMed ID: 8739153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disturbance of lipid composition in spinal cord of rabbits with experimental allergic encephalomyelitis.
    Taranova NP
    Neurochem Res; 1985 Nov; 10(11):1483-97. PubMed ID: 4088428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of total body and local spinal cord irradiation in experimental allergic encephalomyelitis.
    Oldendorf WH; Cornford EM
    J Neuropathol Exp Neurol; 1977 Jan; 36(1):50-61. PubMed ID: 833617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics approaches in experimental allergic encephalomyelitis.
    Battini S; Bund C; Moussallieh FM; Çiçek AE; De Sèze J; Namer IJ
    J Neuroimmunol; 2018 Jan; 314():94-100. PubMed ID: 29224959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain and spinal cord levels of histamine in Lewis rats with acute experimental autoimmune encephalomyelitis.
    Orr EL; Stanley NC
    J Neurochem; 1989 Jul; 53(1):111-8. PubMed ID: 2786054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Glycolipids of rabbit spinal cord in experimental allergic encephalomyelitis].
    Taranova NP; Katsnelson IP; Belokhvostova AS
    Vopr Med Khim; 1975; 21(4):385-90. PubMed ID: 1216759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the effectiveness of the blood-brain and blood-spinal cord barriers in experimental allergic encephalomyelitis.
    Daniel PM; Lam DK; Pratt OE
    J Neurol Sci; 1981; 52(2-3):211-9. PubMed ID: 6796652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor.
    Mohamed A; Shoker A; Bendjelloul F; Mare A; Alzrigh M; Benghuzzi H; Desin T
    Biomed Sci Instrum; 2003; 39():440-5. PubMed ID: 12724933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic experimental allergic encephalomyelitis induced in rabbits with bovine white matter proteolipid apoprotein.
    Williams RM; Lees MB; Cambi F; Macklin WB
    J Neuropathol Exp Neurol; 1982 Sep; 41(5):508-21. PubMed ID: 7108565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the timing of acute blood-brain barrier breakdown to rabbit immunoglobulin G in the cerebellum and spinal cord of mice with experimental autoimmune encephalomyelitis.
    Tonra JR; Reiseter BS; Kolbeck R; Nagashima K; Robertson R; Keyt B; Lindsay RM
    J Comp Neurol; 2001 Jan; 430(1):131-44. PubMed ID: 11135250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA changes in spinal cords of rats with experimental allergic encephalomyelitis.
    Smith ME; Somera FP; Saldivar R; Massacesi L; Trotter J
    J Neurochem; 1984 Dec; 43(6):1635-41. PubMed ID: 6208337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.