These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 1177352)
1. Sulfide reduction in fellmongery effluent by red sulfur bacteria. Cooper DE; Rands MB; Woo CP J Water Pollut Control Fed; 1975 Aug; 47(8):2088-100. PubMed ID: 1177352 [No Abstract] [Full Text] [Related]
2. Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community. Vannini C; Munz G; Mori G; Lubello C; Verni F; Petroni G Syst Appl Microbiol; 2008 Dec; 31(6-8):461-73. PubMed ID: 18814984 [TBL] [Abstract][Full Text] [Related]
3. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria. Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic oxidation of MnS and FeS by Chlorobium spp. Borrego C; García-Gil J Microbiologia; 1995 Sep; 11(3):351-8. PubMed ID: 7576351 [TBL] [Abstract][Full Text] [Related]
6. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. Lin S; Krause F; Voordouw G Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520 [TBL] [Abstract][Full Text] [Related]
7. Chromate reduction by Serratia marcescens isolated from tannery effluent. Campos VL; Moraga R; Yánez J; Zaror CA; Mondaca MA Bull Environ Contam Toxicol; 2005 Aug; 75(2):400-6. PubMed ID: 16222516 [No Abstract] [Full Text] [Related]
8. [Fractionation of stable sulfur isotopes by green photosynthetic bacteria]. Kondrat'eva EN; Mekhtieva VL Mikrobiologiia; 1966; 35(4):569-72. PubMed ID: 6002916 [No Abstract] [Full Text] [Related]
9. Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment. Ramamoorthy S; Piotrowski JS; Langner HW; Holben WE; Morra MJ; Rosenzweig RF J Environ Qual; 2009; 38(2):675-84. PubMed ID: 19244488 [TBL] [Abstract][Full Text] [Related]
10. Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration. Jiang X; Yan R; Tay JH J Hazard Mater; 2009 May; 164(2-3):726-32. PubMed ID: 18824299 [TBL] [Abstract][Full Text] [Related]
11. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques. Gonzalez-Sanchez A; Tomas M; Dorado AD; Gamisans X; Guisasola A; Lafuente J; Gabriel D Water Sci Technol; 2009; 59(7):1323-9. PubMed ID: 19380997 [TBL] [Abstract][Full Text] [Related]
12. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933 [TBL] [Abstract][Full Text] [Related]
13. Tannery effluent as a carbon source for biological sulphate reduction. Boshoff G; Duncan J; Rose PD Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595 [TBL] [Abstract][Full Text] [Related]
14. [Effect of acidic treatment of the chemical composition and bacterial oxidation of arsenic-bearing gold concentrate]. Fomchenko NV; Pivovarova TA; Kondrat'eva TF Prikl Biokhim Mikrobiol; 2008; 44(5):559-64. PubMed ID: 18822776 [TBL] [Abstract][Full Text] [Related]
16. Hexavalent chromium induced changes in growth and biochemical responses of chromate-resistant bacterial strains isolated from tannery effluent. Shukla OP; Rai UN Bull Environ Contam Toxicol; 2006 Jul; 77(1):96-103. PubMed ID: 16832761 [No Abstract] [Full Text] [Related]
17. Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions. Beristain-Cardoso R; Texier AC; Sierra-Alvarez R; Razo-Flores E; Field JA; Gómez J Chemosphere; 2009 Jan; 74(2):200-5. PubMed ID: 18990426 [TBL] [Abstract][Full Text] [Related]
18. Sulfide oxidation in gram-negative bacteria by expression of the sulfide-quinone reductase gene of Rhodobacter capsulatus and by electron transport to ubiquinone. Shibata H; Kobayashi S Can J Microbiol; 2001 Sep; 47(9):855-60. PubMed ID: 11683467 [TBL] [Abstract][Full Text] [Related]
19. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms. Garcia-de-Lomas J; Corzo A; Carmen Portillo M; Gonzalez JM; Andrades JA; Saiz-Jimenez C; Garcia-Robledo E Water Res; 2007 Jul; 41(14):3121-31. PubMed ID: 17524444 [TBL] [Abstract][Full Text] [Related]
20. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks. Nielsen AH; Yongsiri C; Hvitved-Jacobsen T; Vollertsen J Water Sci Technol; 2005; 52(3):201-8. PubMed ID: 16206860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]