BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 11773626)

  • 21. Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity.
    Wakasugi K
    Biochemistry; 2007 Oct; 46(40):11291-8. PubMed ID: 17877375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of a human aminoacyl-tRNA synthetase cytokine.
    Yang XL; Skene RJ; McRee DE; Schimmel P
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15369-74. PubMed ID: 12427973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification.
    Banin E; Dorrell MI; Aguilar E; Ritter MR; Aderman CM; Smith AC; Friedlander J; Friedlander M
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2125-34. PubMed ID: 16639024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mammalian tryptophanyl-tRNA synthetases.
    Kisselev LL
    Biochimie; 1993; 75(12):1027-39. PubMed ID: 7515282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo.
    Hwang J; Kim CW; Son KN; Han KY; Lee KH; Kleinman HK; Ko J; Na DS; Kwon BS; Gho YS; Kim J
    FEBS Lett; 2004 Jul; 570(1-3):47-51. PubMed ID: 15251437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors.
    Hagedorn M; Zilberberg L; Wilting J; Canron X; Carrabba G; Giussani C; Pluderi M; Bello L; Bikfalvi A
    Cancer Res; 2002 Dec; 62(23):6884-90. PubMed ID: 12460903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.
    Miyanokoshi M; Yokosawa T; Wakasugi K
    J Biol Chem; 2018 Jun; 293(22):8428-8438. PubMed ID: 29666190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are the tryptophanyl-tRNA synthetase and the peptide-chain-release factor from higher eukaryotes one and the same protein?
    Frolova LYu ; Fleckner J; Justesen J; Timms KM; Tate WP; Kisselev LL; Haenni AL
    Eur J Biochem; 1993 Mar; 212(2):457-66. PubMed ID: 8444184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of the rodent-specific alternative splice variant of tryptophanyl-tRNA synthetase in murine tissues and cells.
    Miyanokoshi M; Tanaka T; Tamai M; Tagawa Y; Wakasugi K
    Sci Rep; 2013 Dec; 3():3477. PubMed ID: 24327169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for annexin II-S100A10 complex and plasmin in mobilization of cytokine activity of human TrpRS.
    Kapoor M; Zhou Q; Otero F; Myers CA; Bates A; Belani R; Liu J; Luo JK; Tzima E; Zhang DE; Yang XL; Schimmel P
    J Biol Chem; 2008 Jan; 283(4):2070-7. PubMed ID: 17999956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells.
    Yokosawa T; Sato A; Wakasugi K
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors.
    Fernandez-Sauze S; Delfino C; Mabrouk K; Dussert C; Chinot O; Martin PM; Grisoli F; Ouafik L; Boudouresque F
    Int J Cancer; 2004 Mar; 108(6):797-804. PubMed ID: 14712479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs.
    Arakaki TL; Carter M; Napuli AJ; Verlinde CL; Fan E; Zucker F; Buckner FS; Van Voorhis WC; Hol WG; Merritt EA
    J Struct Biol; 2010 Aug; 171(2):238-43. PubMed ID: 20438846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different angiogenesis effect of mini-TyrRS/mini-TrpRS by systemic administration of modified siRNAs in rats with acute myocardial infarction.
    Zeng R; Chen YC; Zeng Z; Liu WQ; Liu XX; Liu R; Qiang O; Li X
    Heart Vessels; 2010 Jul; 25(4):324-32. PubMed ID: 20676842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for the early divergence of tryptophanyl- and tyrosyl-tRNA synthetases.
    Brown JR; Robb FT; Weiss R; Doolittle WF
    J Mol Evol; 1997 Jul; 45(1):9-16. PubMed ID: 9211729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mini-TrpRS is essential for IFNγ-induced monocyte-derived giant cell formation.
    Biros E; Vangaveti V; Moran CS
    Cytokine; 2021 Jun; 142():155486. PubMed ID: 33721618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The IFN-γ/miniTrpRS signaling axis: An insight into the pathophysiology of osteoporosis and therapeutic potential.
    Biros E; Malabu UH; Vangaveti VN; Birosova E; Moran CS
    Cytokine Growth Factor Rev; 2022 Apr; 64():7-11. PubMed ID: 35115234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase.
    Jorgensen R; Søgaard TM; Rossing AB; Martensen PM; Justesen J
    J Biol Chem; 2000 Jun; 275(22):16820-6. PubMed ID: 10828066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mini tryptophanyl-tRNA synthetase is required for a synthetic phenotype in vascular smooth muscle cells induced by IFN-γ-mediated β2-adrenoceptor signaling.
    Biros E; Moran CS
    Cytokine; 2020 Mar; 127():154940. PubMed ID: 31786502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of tumor angiogenesis by roxithromycin, a 14-membered ring macrolide antibiotic.
    Yatsunami J; Tsuruta N; Hara N; Hayashi S
    Cancer Lett; 1998 Sep; 131(2):137-43. PubMed ID: 9851245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.